
BIRATIONAL INVARIANTS OF VOLUME PRESERVING MAPS

KONSTANTIN LOGINOV AND ZHIJIA ZHANG

Abstract. We study the group of birational automorphisms of the n-dimensional
projective space that preserve the standard torus invariant volume form with log-
arithmic poles. We prove that this group is not generated by pseudo-regularizable
maps for n ≥ 4 over C, and for n ≥ 3 over number fields. As a corollary, we show
that this group is not simple in these cases.
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1. Introduction

Let k be a field of characteristic zero. It is a long-standing problem in birational
geometry to understand the Cremona group Crn(k) = Birk(Pn), the group of birational
automorphisms over k of the n-dimensional projective space. The classical problem of
finding explicit generating sets of Crn(k) dates back to the 19th century. In dimension 2,
the solution is known as the Noether-Castelnuovo theorem:

Theorem 1.1 ([Noe70, Cas01]). Over an algebraically closed field k, the group Cr2(k)
is generated by PGL3(k) = Autk(P2), and the Cremona involution σ acting on P2 via

σ : (x : y : z) 7→
(
1

x
:
1

y
:
1

z

)
.

The situation is more complicated when k is not algebraically closed: the base loci of
the maps generated by PGL3(k) and ι only consist of k-rational points, so these maps
form a proper subgroup of Cr2(k), see [BH15]. Generators of Cr2(k) over a nonclosed
field k are described in [Isk91]. Despite significant developments in modern birational
geometry, the problem of finding explicit generating sets of Crn(k) for n ≥ 3 is still
open.
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2 K. LOGINOV AND ZH. ZHANG

In many cases, it is also interesting to study birational maps preserving additional
structures, e.g., symmetries or volume forms. In this paper, we study birational maps
that preserve logarithmic volume forms (see Definition 2.4). In particular, consider the
standard torus invariant volume form on Pn, given by the formula

(1.1) ωn =
dx1
x1

∧ · · · ∧ dxn
xn

in some affine chart An ⊂ Pn. Let Birk(Pn, ωn) be the group of volume preserving
birational automorphisms over k of the pair [Pn, ωn], i.e., birational automorphisms
over k of Pn that preserve ωn (see Definition 2.3). Corti and Kaloghiros showed that
over k = C, this group is generated by volume preserving Sarkisov links [CK16]. We
give a negative answer to the existence of a simple generating set of Birk(Pn, ωn), for
various fields k when n ≥ 3.
In dimension 2, an explicit set of generators of BirC(P2, ω2) was found by Usnich

[Usn06] and Blanc [Bla13]. Note that the standard torus action of G2
m on P2 preserves

ω2. There is also an embedding of the group SL2(Z) into Birk(P2, ω2), via automor-
phisms of G2

m given by the following formula:

(x, y) 7→ (xayb, xcyd),

for an element
(
a b
c d

)
∈ SL2(Z) .

Theorem 1.2 ([Bla13]). Let ω2 be the standard torus invariant volume form (1.1)
on P2 over an algebraically closed field k. Then the group Birk(P2, ω2) is generated by
the subgroups G2

m, SL2(Z) described above, and the cluster transformation τ of order 5:

τ : (x, y) 7→
(
y,
y + 1

x

)
.

A birational automorphism of Pn is called regularizable if it is conjugate in Crn(k) to
a regular automorphism of a rational variety. For example, the map τ in Theorem 1.2
is regularized on a del Pezzo surface of degree 5. In particular, elements of finite order
in Crn(k) are regularizable. A birational automorphism is called pseudo-regularizable
if it is conjugate in Crn(k) to a pseudo-automorphism of a rational variety, i.e., to a
birational automorphism which is an isomorphism in codimension 1 (see Example 3.5).
Since SL2(Z) can be generated by elements of finite order, it follows that both Cr2(k)
and Birk(P2, ω2) are generated by regularizable elements if k is algebraically closed.
When n ≥ 3 and k is algebraically closed, it is known that Crn(k) cannot be gen-

erated by regular automorphisms together with birational maps of bounded degree or
countably many elements when k is uncountable [Pan99]. Recently, Lin and Shinder
showed that Crn(k) cannot be generated by pseudo-regularizable elements.

Theorem 1.3 ([LS24]). In each of the following cases, Crn(k) is not generated by
pseudo-regularizable elements:

(1) n ≥ 3 and k is a number field; or the function field of an algebraic variety over
a number field, over a finite field, or over an algebraically closed field,
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(2) n ≥ 4 and k is a subfield of C,
(3) n ≥ 5 and k is any infinite field.

Theorem 1.3 implies that any generating set of Crn(k) in the given cases must be con-
siderably intricate. Our main theorem is a generalization of this result to Birk(Pn, ωn).
Theorem 1.4 (Corollary 4.2, Corollary 5.18). Let ωn be the standard torus invariant
volume form (1.1) on Pn. In each of the following cases, Birk(Pn, ωn) is not generated
by pseudo-regularizable elements:

(1) n ≥ 3 and k is a number field; or the function field of an algebraic variety over
a number field, over a finite field, or over an algebraically closed field,

(2) n ≥ 4 and k = C.
In particular, Birk(Pn, ωn) in cases (1) or (2) is not generated by the standard torus
action of Gn

m on Pn together with elements of finite order.

Our main tool is a birational invariant c defined in [CLKT23] for volume preserving
birational maps, in parallel with the invariant c for birational maps introduced in
[LS24], see Section 3. We show that the birational automorphisms used in [LS24] can
be realized as volume preserving birational automorphisms of the pair [Pn, ωn] with
non-trivial invariant c. This proves Theorem 1.4 and leads to the following.

Theorem 1.5 (Corollary 4.3, Corollary 5.19). The group Birk(Pn, ωn) is not simple
when n and k are as in cases (1) or (2) in Theorem 1.4.

Another motivation to study varieties equipped with volume forms comes from the
theory of log Calabi-Yau pairs. A log Calabi-Yau pair is a pair (X,D) consisting of a
normal proper variety X and an effective divisor D with integral coefficients such that
KX +D ∼ 0, see section 2.3. For every such pair, there exists a unique (up to scaling)
volume form ωD on X satisfying D + div(ωD) = 0. It turns out that studying volume
preserving birational maps is crucial for the understanding of birational geometry of
log Calabi-Yau pairs.

In a recent work [ACM23], the group BirC(P3, D) of birational automorphisms of P3

preserving (up to scaling) the volume form ωD associated with an irreducible quartic
surface D was studied. The pair (P3, D) in this case has coregularity 2, see Definition
2.3. It was noted that the pair is birationally rigid when D is smooth and general (see
[ACM23, Theorem A]) and the appearance of singularities on D enriches the birational
geometry of the pair (P3, D).
Our work concerns the opposite case: elements in Birk(Pn, ωn) correspond to bira-

tional automorphisms of the log Calabi-Yau pairs (Pn, D) with coregularity 0, where D
is the union of n + 1 coordinate hyperplanes. Correspondingly, we observe a different
behaviour and a richer group structure of Birk(Pn, ωn). It turns out that many well-
known rational varieties admit a boundary of coregularity 0, which makes them crepant
equivalent (see Definition 2.5) to Pn with the union of n + 1 coordinate hyperplanes,
see [LMV24].

Our constructions in Section 4 and 5 imply that certain birational automorphisms
of Pn preserve an anti-canonical divisor D of coregularity 0. On the other hand, there
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exist birational automorphisms of Pn which do not preserve any anti-canonical divisor
of coregularity 0. The following question is interesting:

Question 1.6. How to characterize elements in Crn(k) which preserve an anti-canonical
divisor in Pn over k of coregularity 0?

The group structure of Birk(P2, ω2) has also been studied in different contexts. A sur-
jective (and non-injective) homomorphism from BirC(P2, ω2) to the Thompson group,
the group of piecewise-linear automorphisms of Z2, was constructed in [Usn06]. It fol-
lows that Birk(P2, ω2) is not simple when k is algebraically closed. The construction of
[Usn06] is clarified through the action of the group Birk(P2, ω2) on the space of valua-
tions of the function field k(P2), see [Fav10]. From this perspective, the construction
can be naturally generalized to higher dimensions. This leads to the following question.

Question 1.7. Is the natural map from Birk(Pn, ωn) to the group of piecewise-linear
automorphisms of Zn always surjective?

Here is a roadmap of this paper. In Section 2, we recall basic notions from birational
geometry and the Chambert-Loir–Kontsevich–Tschinkel Burnside formalism of vari-
eties endowed with logarithmic volume forms. In Section 3, we study our main tool:
the invariant c of volume preserving birational maps. Section 4 proves the first asser-
tion of Theorem 1.4, using a classical birational automorphism of P3. Section 5 proves
the second assertion of Theorem 1.4, using the Hassett–Lai birational automorphism
of P4 constructed in [HL18].

Acknowledgments. The first author is supported by the Russian Science Foundation
under grant 24-71-10092. The authors are thankful to Yuri Tschinkel for his interest
in this work and useful remarks. The authors are grateful to Alexander Kuznetsov for
numerous suggestions on how to improve the exposition, and to Brendan Hassett for
helpful conversations.

2. Preliminaries

Throughout, k is a field of characteristic 0, not necessarily algebraically closed. We
use the language of the minimal model program, see e.g. [KM98].

2.1. Pairs and singularities. A morphism f : X → Y of normal proper varieties
is called a contraction if f∗OX = OY . Note that a contraction is surjective and has
connected fibers. A contraction f is called a fibration if dimY < dimX.

A pair (resp., a sub-pair) (X,D) consists of a normal proper variety X and a Weil
Q-divisor D with coefficients in [0, 1] (resp., in (−∞, 1]) such that KX+D is Q-Cartier.
In this situation, we call D a boundary (resp., a sub-boundary). Recall that a divisor D
on a smooth variety has simple normal crossings (snc for short), if all of its components
are smooth, and any point in D has an open neighborhood in the analytic topology
that is analytically equivalent to the union of coordinate hyperplanes.
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We say that f : Y → X is a log resolution of a sub-pair (X,D) if Y is smooth, and
Exc(f) ∪ supp(f−1

∗ D) is an snc divisor. Let DY = −KY + f ∗(KX +D). Then (Y,DY )
is called the log pullback of (X,D). If (X,D) is a sub-pair and f is a log resolution,
then (Y,DY ) is called an snc modification. The log discrepancy a(E,X,D) of a prime
divisor E on Y with respect to (X,D) is defined as

a(E,X,D) := 1− coeffEDY .

We say (X,D) is lc (resp., klt) if a(E,X,D) ≥ 0 (resp., > 0) for every such E and
for any log resolution f . We say that the pair is plt, if a(E,X,D) > 0 holds for any
f -exceptional divisor E and for any log resolution f . We say that the pair is dlt, if
a(E,X,D) > 0 holds for any f -exceptional divisor E and for some log resolution f .
An lc-place of (X,D) is a prime divisor E on a birational model of X, such that

a(E,X,D) = 0. An lc-center is the image on X of an lc-place.

2.2. Dual complex. Let D =
∑
Di be a Cartier divisor on a smooth variety X. The

dual complex, denoted by D(D), of a simple normal crossing divisor D =
∑r

i=1Di on a
smooth variety X is a CW-complex constructed as follows. The simplices vZ of D(D)
are in bijection with irreducible components Z of the intersection

⋂
i∈I Di for any non-

empty subset I ⊂ {1, . . . , r}, and the vertices of vZ correspond to the components Di

with i ∈ I. In particular, the dimension of vZ is equal to #I − 1. We call Z a stratum
of D.

The gluing maps are constructed as follows. For any non-empty subset I ⊂ {1, . . . , r},
let Z ⊂

⋂
i∈I Di be a stratum, and for any j ∈ I, let W be the unique component of⋂

i∈I\{j}Di containing Z. Then the gluing map is the inclusion of vW into vZ as a face
of vZ that does not contain the vertex vi corresponding to Di. Note that the dimen-
sion of D(D) does not exceed dimX − 1. If D(D) is empty, i.e., D = 0, we say that
dimD(D) = −1.

We denote by D=1 the sum of the components of D with coefficient 1. For an lc pair
(X,D), we define D(X,D) as D(D=1

Y ) where f : (Y,DY ) → (X,D) is a log resolution
of (X,D), so that we have

KY +DY = f ∗(KX +D).

It is known that the PL-homeomorphism class of D(D=1
Y ) does not depend on the

choice of a log resolution, see [dFKX17, Proposition 11].

2.3. Calabi-Yau pairs and coregularity. Let (X,D) be an lc sub-pair. We say
(X,D) is a log Calabi-Yau sub-pair (or log CY sub-pair for short) if D is a Weil
divisor with integral coefficients, and KX +D is linearly equivalent to 0, denoted by,
KX + D ∼ 0 1. A log CY sub-pair (X,D) is called a log Calabi-Yau pair (or log CY
pair) if D is effective. We call a log Calabi-Yau pair (X,D) a toric pair if X is a k-split
toric variety and the boundary D is a torus invariant divisor. We refer to the pair
(Pn,∆n) with ∆n = {x1x2 · · ·xn+1 = 0} as the standard toric pair.

1Note that our definition is more restrictive than the usual one, where D could have fractional
coefficients, and KX +D is Q-linearly trivial.
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The coregularity of a log Calabi-Yau pair (X,D), denoted by coreg(X,D) and defined
in [Mor24], is the dimension of a minimal lc-center on any snc (or dlt) modification
(Y,DY ) of (X,D). Note that coreg(X,D) is equal to the minimal dimension of a
stratum of D=1

Y . Equivalently, the coregularity is equal to

coreg(X,D) = dimX − dimD(X,D)− 1,

where D(X,D) is the dual complex of the pair (X,D). For more details on coregularity,
see [Mor24]. The following lemma is a generalization of [ALP24, Lemma 4.2].

Lemma 2.1. Let S ⊂ P3 be an irreducible cubic surface with at worst du Val singu-
larities, and H ⊂ P3 a plane. Assume one of the following holds:

• S ∩H is the union of a line and a smooth conic intersecting transversally;
• S ∩H is the union of three lines forming a triangle.

Then the pair (P3, S +H) is a log Calabi-Yau pair with coregularity 0.

Proof. Put D = S + H. First, we check that (P3, D) is an log Calabi-Yau pair. The
linear equvalence KP3 +D ∼ 0 is obvious. By assumption, the pair (H,S|H) is lc. By
inversion of adjunction, (P3, D) is lc near S ∩ H. Since S has canonical singularities
and H is smooth, we know that the pair (P3, D) is lc.
Let f : Y → P3 be a log resolution of (P3, D), and (Y,DY ) the log pullback of (P3, D).

Note that DY is a sub-boundary. To conclude that coreg(P3, D) = 0, it suffices to check
that D=1

Y admits a 0-dimensional stratum.

Let H̃ be the strict preimage of H via the map f . Put DH̃ = (DY −H̃)|H̃ . Note that
the snc Calabi-Yau sub-pair (H̃,DH̃) is the log pullback of (H,S|H), where H ≃ P2 and
S|H is either the union of three lines forming a triangle, or the union of a line and a conic

intersecting transversally. Since coreg(H,S|H) = 0, it follows that coreg(H̃,DH̃) = 0.
Thus, the snc divisor D=1

H̃
admits a zero-dimensional stratum. Hence, the divisor D=1

Y

admits a zero-dimensional stratum as well. This shows that coreg(Y,DY ) = 0, and so
coreg(P3, D) = 0 as claimed. □

2.4. Burnside groups. We recall the definitions of several versions of Burnside groups
introduced in [KT19] and [CLKT23], and introduce the definition of the divisorial
Burnside group.

Definition 2.2. The Burnside group Burnn(k) is a free abelian group generated by
the k-birational isomorphism classes [X] of n-dimensional (reduced and k-irreducible)
algebraic varieties X over k.

Definition 2.3. Consider pairs [X,ωX ] where

• X is an n-dimensional (reduced and k-irreducible) smooth and proper algebraic
variety over k, and

• ωX is a rational volume form on X, i.e., ωX ∈ Ωn
k(X).

Two pairs [X,ωX ] and [Y, ωY ] with volume forms ωX and ωY are equivalent if there
exists a birational map ϕ : X 99K Y such that ϕ∗(ωY ) = ωX . When such a map exists,
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we say ϕ is a volume preserving birational map, and the pair [Y, ωY ] is a model of
[X,ωX ]. The existence of a volume preserving map is also equivalent to the existence
of a diagram

(2.1)

[Z, ωZ ]

[X,ωX ] [Y, ωY ]

gf

ϕ

where ϕ is a birational map, f and g are birational contractions and

ωZ = f ∗(ωX) = g∗(ωY ).

Definition 2.4. The Burnside group of logarithmic volume forms Burnn(k) is a free
abelian group generated by the equivalence classes of pairs [X,ωX ] where

• X is an n-dimensional (reduced and k-irreducible) smooth and proper algebraic
variety over k, and

• ωX is a logarithmic volume form on X, which means, ωX ∈ Ωn
k(X), and for all

proper smooth models [Y, ωY ] of [X,ωX ] such that the divisor of zeros and poles
of ωY has simple normal crossings, the rational differential form ωY has poles
of order at most 1.

There is a natural forgetful homomorphism

(2.2) ϱ : Burnn(k) → Burnn(k)

given by

[X,ωX ] 7→ [X],

and a natural embedding

(2.3) ι : Burnn(k) ↪→ Burnn(k)

given by

[X] 7→ [X, 0].

Definition 2.5. Two sub-pairs (X,DX) and (Y,DY ) are crepant equivalent if there
exists the following diagram

(2.4)

(Z,DZ)

(X,DX) (Y,DY )

gf

ϕ

where ϕ is a birational map, f and g are birational contractions, and

f∗DZ = DX , g∗DZ = DY , KZ +DZ = f ∗(KX +DX) = g∗(KY +DY ).

Under these conditions, we say ϕ is a crepant birational map, or a crepant equivalence.
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Example 2.6. Consider two pairs (X,DX) and (Y,DY ) where X and Y are normal
toric varieties of dimension n, and the divisors DX and DY are sums of all torus-
invariant divisors with coefficient 1 on X and Y , respectively. Then the two pairs are
crepant equivalent lc pairs.

Finally, we introduce the following definition.

Definition 2.7. The divisorial Burnside group DivBurnn(k) is a free abelian group
generated by the crepant equivalence classes of lc sub-pairs (X,D) where

• X is a n-dimensional (reduced and k-irreducible) smooth and proper algebraic
variety over k, and

• D =
∑
aiDi is a divisor with ai ∈ Z (note that ai could be negative).

Note that from the assumption that (X,D) is lc, it follows that ai ≤ 1, and this holds
for any model of (X,D).

Let Burn̸=0
n (k) be the subgroup of Burnn(k) generated by pairs [X,ωX ] such that

ωX ̸= 0, and Burn=0
n (k) the subgroup generated by pairs of the form [X, 0]. We have

Burnn(k) = Burn̸=0
n (k)⊕Burn=0

n (k).

Note that ι(Burnn(k)) = Burn=0
n (k), where ι is as in (2.3). Consider the map

(2.5) δn : Burn̸=0
n (k) → DivBurnn(k)

given by

[X,ωX ] 7→ (X,−div(ωX)),

where div(ωX) is the divisor of zeroes and poles of ωX . Note that the pair (X,−div(ωX))
is lc by the assumption on the poles of ωX . It follows that the pair (X,−div(ωX)) is a
log Calabi-Yau sub-pair.

Vice versa, given a log Calabi-Yau sub-pair (X,D), we have KX ∼ −D. So there
exists a rational logarithmic volume form on X whose divisor of zeroes and poles is
−D. This proves the following.

Proposition 2.8. The image of the δn map (2.5) in DivBurnn(k) coincides with the
subgroup generated by log Calabi-Yau sub-pairs.

Note that δn is not surjective even for n = 1, since not any lc sub-pair is Calabi-Yau.
Clearly, δn is not injective as well, because multiplying a volume form by a non-zero
constant does not change its divisor of zeroes and poles. Also, δn cannot be naturally
extended to Burn=0(k) as the following example shows.

Example 2.9. Let f : F1 → P2 be the blow up of a point on P2. Denote by E the
f -exceptional divisor. Then the pair [P2, 0] is equivalent to the pair [F1, 0] in Burn2(k).
On the other hand, the pair (P2, 0) is equivalent to the pair (F1,−E) in DivBurn2(k).
One can check that the latter pair is not equivalent to (F1, 0).
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2.5. Pluri-canonical representation. Let [X,ω] ∈ Burnn(k) with ω ̸= 0. We de-
note by Birk(X,ω) the group of volume preserving birational automorphisms over k

[X,ω] 99K [X,ω].

Consider the associated log CY sub-pair (X,D) with D = −div(ω). Assume that
(X,D) is a log CY pair, so that KX +D ∼ 0 and D ≥ 0. Let Birk(X,D) be the group
of crepant birational automorphisms over k of (X,D) 99K (X,D).
Here we explain how the groups Birk(X,ω) and Birk(X,D) are related. First, note

that a birational automorphism can act on a logarithmic volume form non-trivially
while preserving the corresponding divisor of its zeroes and poles:

Example 2.10. Let σn : Pn 99K Pn be the Cremona involution given by the formula

(x0 : . . . : xn) 7→
(

1

x0
: . . . :

1

xn

)
.

Then σn acts on the standard torus invariant volume form ωn on Pn via multiplication
by (−1)n, and preserves the divisor of its zeroes and poles.

For a log Calabi-Yau pair (X,D), there exists a (unique up to a scalar) logarithmic
volume form that corresponds to a non-zero element in H0(X,OX(KX + D)). The
group Birk(X,D) acts linearly on the 1-dimensional vector space H0(X,OX(KX+D)),
cf. [HX16, 2.14]. This gives rise to a representation

ρ = ρ(X,D) : Birk(X,D) → GL(H0(X,OX(KX +D)))

called the (pluri-)canonical representation 2 of Birk(X,D). The following result is a
generalization of the classical theorem due to Ueno and Deligne:

Theorem 2.11 ([FG14, Theorem 1.1], [HX16, Theorem 1.2]). Let (X,D) be a log CY
pair. Then the image of the pluri-canonical representation ρ(X,D)(Birk(X,D)) is finite.

Now let [X,ω] ∈ Burnn(k), and let (X,D) be a log CY sub-pair such that D =
−div(ω). Assume that D is effective. Then it follows from Theorem 2.11 that we have
an exact sequence

1 → Birk(X,ω) → Birk(X,D) → Im(ρ) → 1

where Im(ρ) is a finite group. This implies the following corollary.

Corollary 2.12. Let [X,ω] be a pair in Burnn(k) and put D = −div(ω). Assume
that (X,D) is a log Calabi-Yau pair, in particular, D is effective. Then for any ψ ∈
Birk(X,D), there exists some positive integer N such that ψN ∈ Birk(X,ω).

Theorem 2.11 and Corollary 2.12 show that for log Calabi-Yau pairs, the notions of
crepant birational automorphisms and volume preserving maps are equivalent up to
raising the automorphism to some finite power. We use this fact in Section 4 and 5.

2In fact, this map is defined in a more general setting when m(KX +D) ∼ 0 for some m > 0, and
then Birk(X,D) acts by linear automorphisms on the space of pluri-forms H0(X,OX(m(KX +D))).
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2.6. Burnside rings and stable equivalence. There exists a ring structure on the
Burnside group

Burn(k) =
⊕
n≥0

Burnn(k)

with the multiplication given by the following: for [X,ωX ] and [Y, ωY ] in Burnn(k)
and Burnm(k), we put

[X,ωX ] · [Y, ωY ] = [X × Y, ωX ∧ ωY ].

Then we extend this definition by linearity. Similarly, we define a ring structure on

DivBurn(k) =
⊕
n≥0

DivBurnn(k)

as follows. For (X,DX) and (Y,DY ) in DivBurnn(k) and DivBurnm(k), we put

(X,DX) · (Y,DY ) = (X × Y, π∗
1DX + π∗

2DY )

where π1 : X × Y → X and π2 : X × Y → Y are the canonical projections to the first
and second factor. Then we extend this definition by linearity. Note that the map
δ =

∑
n≥0 δn where δn is as in (2.5) becomes a ring homomorphism

δ : Burn̸=0(k) =
⊕
n≥0

Burn̸=0
n (k) → DivBurn(k).

In light of this, we define a map

jn,r : DivBurnn(k) → DivBurnn+r(k)

given by

(X,D) 7→ (X × Pr, π∗
1D + π∗

2∆r)

where ∆r = {x1x2 · · · xr+1 = 0} ⊂ Prx1,...,xr+1
is the standard toric boundary on Pr.

Given two pairs

(X,DX) ∈ DivBurnn(k) and (Y,DY ) ∈ DivBurnm(k),

we say they are stably crepant birational if there exists r1, r2 ∈ N such that

jn,r1(X,DX) = jm,r2(Y,DY ).

Nontrivial stable birationalities between algebraic varieties have been exhibited in
[BCTSSD85]. It would be interesting to study nontrivial stable crepant birationali-
ties of pairs. We propose the following:

Question 2.13. Do there exist pairs (X,DX) and (Y,DY ) of coregularity 0 such that
they are not crepant birational, but stably crepant birational?

Note that coregularity of a pair is invariant under crepant birational maps, and if
coreg(X,D) = 0 and dimX = n, then coreg jn,r(X,D) = 0 for any r ≥ 0.
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3. Invariants of birational maps

In [LS24], for any birational map ϕ : X 99K Y over k with dim(X) = n, an invari-
ant c(ϕ) taking values in Burnn−1(k) is defined as follows. Consider a resolution of the
map ϕ:

Z

X Y

gf

ϕ

Then put

c(ϕ) =
∑
i

[Ei]−
∑
j

[Fj] ∈ Burnn−1(k)

where the sum
∑

i[Ei] runs over k-irreducible components of the f -exceptional locus
Exc(f), the sum

∑
j[Fj] runs over k-irreducible components of the g-exceptional locus

Exc(g). One can check that c(ϕ) does not depend on the choice of a resolution, and c
induces a group homomorphism [LS24, Lemma 2.2]

c : Birk(X) → Burnn−1(k).

A similar invariant c is defined for volume preserving birational maps in [CLKT23].
Let [X,ωX ], [Y, ωY ] be two representatives of an equivalence class in Burnn(k), and

ϕ : [X,ωX ] 99K [Y, ωY ]

a volume preserving birational map. Then there exists a resolution

(3.1)

[Z, ωZ ]

[X,ωX ] [Y, ωY ]

gf

ϕ

where f and g are birational contractions and

ωZ = f ∗(ωX) = g∗(ωY ).

An invariant c(ϕ) ∈ Burnn−1(k) is associated to ϕ as follows. Let ∪i∈IEi be the union
of k-irreducible components of the f -exceptional locus Exc(f), and ∪j∈JFj the union
of k-irreducible components of the g-exceptional locus Exc(g). We put

c(ϕ) =
∑
i∈I

[Ei, ρEi
(ωZ)]−

∑
j∈J

[Fj, ρFj
(ωZ)] ∈ Burnn−1(k)

where ρ is the residue map defined in [CLKT23, Section 4]. In [CLKT23], it is proven
that c(ϕ) does not depend on the choice of a resolution Z.
Let [X,ωX ] ∈ Burnn(k). The induced map

c : Birk(X,ωX) → Burnn−1(k)
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is a group homomorphism [CLKT23, Corollary 7.6]. In the next lemma, we show that
the map c on Birk(X,ωX) essentially coincides with the map c from [LS24], so the
presence of volume forms does not give much new information.

Lemma 3.1. Let [X,ωX ] ∈ Burnn(k). Then the image c(Birk(X,ωX)) is contained
in the group Burn=0

n−1(k). Moreover, we have a commutative diagram

(3.2)

Birk(X,ωX) Burnn−1(k)

Birk(X) Burnn−1(k)

c

c

ι

where the left vertical arrow is the natural inclusion and ι is as in (2.3).

Proof. It suffices to show that

c(ϕ) =
∑
i

±[Ei, 0] ∈ Burn=0
n−1(k) ⊂ Burnn−1(k)

for some divisors Ei over X. The claim is straightforward if ωX = 0. So we may assume
that ωX ̸= 0. For any element ϕ ∈ Birk(X,ωX), consider the diagram

(3.3)

[Z, ωZ ]

[X,ωX ] [X,ωX ]

gf

ϕ

where f and g are birational contractions and ωZ = f ∗(ωX) = g∗(ωX). Put D =
−div(ωX) and DZ = −div(ωZ). Note that D and DZ are integral divisors with coeffi-
cients at most 1. Observe that the pair (X,D) is lc, cf. Proposition 2.8, and the pair
(Z,DZ) is the log pullback of (X,D).

We show that only divisors E on Z with a(E,X,D) > 0 can make non-trivial
contributions to c(ϕ), and such divisors only contribute to elements in ι(Burnn−1(k)).
Let E be a divisor on Z which is either f - or g-exceptional. If E is both f - and g-
exceptional, then it does not contribute to c(ϕ). Let us assume that E is f -exceptional
and not g-exceptional. Note that a(E,X,D) = a(E,Z,DZ), because the pairs (X,D)
and (Z,DZ) are crepant equivalent.

When a(E,X,D) > 0, we have coeffEDZ ≤ 0. This means that ωZ is regular at the
generic point of E. By definition of the residue map [CLKT23, Section 4], this implies
that ρE(ωZ) = 0. Thus, the class [E, 0] in c(ϕ) belongs to

ι(c(ϕ)) ⊂ ι(Burnn−1(k)) = Burn=0
n−1(k).

When a(E,X,D) = 0, we have coeffEDZ = 1. Put ωE = ρE(ωZ). We show that
the class [E,ωE] is cancelled in c(ϕ) by some other term. Indeed, since E is not g-
exceptional and g∗(DZ) = D, it follows that g(E) is a component ofD with coefficient 1.
Put g(E) = D1 and ωD1 = ρD1(ωX).
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From the definition of the residue map [CLKT23, Section 4], it follows that taking
a residue of the form ωX commutes with pullback:

(3.4) (g|E)∗(ωD1) = (g|E)∗(ρD1(ωX)) = ρE(g
∗(ωX)) = ρE(ωZ) = ωE.

It follows that [E,ωE] = [D1, ωD1 ] in Burnn−1(k).
Let D1, . . . , Dk be all the components of D with coefficient 1 such that [Di, ωDi

] =
[D1, ωD1 ] in Burnn−1(k) for ωDi

= ρDi
(ωX). Consider their strict transforms D′

i on Z
which belong to DZ with coefficient 1. Put ωD′

i
= ρD′

i
(ωZ). Similarly to (3.4), we have

(f |D′
i
)∗(ωDi

) = ωD′
i
. Thus, all the classes [D′

i, ωD′
i
] = [E,ωE] coincide in Burnn−1(k)

for 1 ≤ i ≤ k.
We have g∗(DZ) = D, and D=1 contains k ≥ 1 divisors whose classes are equal to

[Di, ωDi
]. On the other hand, D=1

Z contains at least k + 1 divisors with such classes,
and at least one of them, Ei, is f -exceptional and not g-exceptional. It follows that at
least one of D′

i, say D
′
2, should be contracted by g. We conclude that the class [E,ωE]

is cancelled by [D′
2, ωD′

2
] in c(ϕ).

So we can cancel the terms [E,ωE] − [D′
2, ωD′

2
] from c(ϕ). Proceeding to the next

f -exceptional and not g-exceptional divisor and using induction, and then applying a
similar argument to g-exceptional and not f -exceptional divisor, we conclude that

c(ϕ) =
∑
i

±[Ei, 0] ∈ Burnn−1(k)

for some divisors Ei on Z. Thus, the image c(Birk(X,ωX)) is contained in ι(Burnn−1(k)).
This completes the proof. □

Corollary 3.2. In each of the following cases, we have c(Birk(X,ωX)) = 0:

• [X,ωX ] ∈ Burn2(k) where k is arbitrary, or
• [X,ωX ] ∈ Burn3(k) where k is algebraically closed.

Proof. By Lemma 3.1, it suffices to show that c(Birk(X)) = 0 under these assumptions.
This follows from [LS24, Theorem 2.5, Proposition 2.6]. □

Abusing notation, we also define an invariant c for a crepant birational map

ϕ : (X,DX) 99K (Y,DY )

in a similar way as above. Recall that by definition, there exists a diagram

(Z,DZ)

(X,DX) (Y,DY )

gf

ϕ

where ϕ is a birational map, f and g are birational contractions, and

f∗DZ = DX , g∗DZ = DY , KZ +DZ = f ∗(KX +DX) = g∗(KY +DY ).
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Let ∪i∈IEi be the union of irreducible components of f -exceptional divisors, and ∪j∈JFj
the union of irreducible components of g-exceptional divisors. We define

c(ϕ) =
∑
i∈I

(Ei, DEi
)−

∑
j∈J

(Fj, DFj
) ∈ DivBurnn−1(k),

where DEi
is defined in the following way. We put

DEi
=

{
−KEi

+ (KZ +DZ)|Ei
if Ei belongs to DZ with coefficient 1,

0 otherwise,

and DFj
is defined similarly. A similar proof of Lemma 3.1 shows the following.

Lemma 3.3. Let (X,DX) ∈ DivBurnn−1(k), and ϕ ∈ Birk(X,DX). Then c(ϕ)
belongs to the subgroup in DivBurnn−1(k) generated by pairs of the form (E, 0) where
dimE = n− 1.

Remark 3.4. Note that we abuse the notation c to refer to the invariants of both
volume preserving and crepant birational automorphisms. This is due to the fact that
both invariants can be essentially identified with the Lin-Shinder c-invariant of the
underlying birational maps, as Lemma 3.1 and Lemma 3.3 imply. In other words, the
presence of volume forms and boundaries does not provide much additional information
in the invariants. This simplifies the computation of the c-invariant of various crepant
birational maps in Section 4 and 5.

Example 3.5 (Pseudo-regularizable map). A birational map ϕ ∈ Birk(X) is called
pseudo-regularizable if ϕ = α−1 ◦ γ ◦ α where

• α : X 99K X ′ is a birational map with some variety X ′ over k, and
• γ ∈ Birk(X

′) is an isomorphism in codimension 1.

In particular, pseudo-regularizable maps include regular automorphisms and birational
automorphisms of finite order, see [LS24, Example 4.2]. We call a volume preserving bi-
rational automorphism ϕ ∈ Birk(X,ω) pseudo-regularizable if ϕ is pseudo-regularizable
as an element in Birk(X). For such maps ϕ, it is not hard to see that c(ϕ) = 0 since
c(γ) = 0 by definition. Then it follows from Lemma 3.1 that c(ϕ) = 0.

4. P3 with quintic genus one curves

In this section, we construct a crepant birational automorphism of the standard toric
pair over certain field k

σ : (P3,∆3) 99K (P3,∆3), ∆3 = {x1x2x3x4 = 0} ⊂ P3
x1,...,x4

such that
0 ̸= c(σ) ∈ DivBurn2(k).

Our construction is a refinement of [LS24, Proposition 3.6], which relies on the classical
quadro-cubic Cremona transformation [SR49, Chapter VII, 5.1]. We briefly recall their
construction.
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Let C be a quintic genus one curve, given by a scheme-theoretic intersection of five
quadrics in P4. Let Q be a smooth quadric threefold in P4 containing C. The linear
system of quadrics in P4 containing C yields a birational map

φ : Q 99K P3.(4.1)

The map φ blows up C and then blows down a divisor to a curve C ′ in P3. The curve
C ′ is isomorphic to the Jacobian Jac2(C) of degree 2 line bundles on C. The inverse
map φ−1 is given by the linear system of cubics passing through C ′. By [LS24], Q
always contains a k-line. Projection from a point on the line induces a birational map

π : Q 99K P3.

The map φ ◦ π−1 is then a birational automorphism of P3. When C has no k-points,
C and C ′ are not isomorphic, and one has

0 ̸= c(φ ◦ π−1) = [C × P1]− [J2(C)× P1] ∈ Burn2(k).
Now, the goal is to extend this map to a crepant birational map of some log CY

pairs that admit toric models.

Proposition 4.1. Let k be a field of one of the following:

• a number field;
• the function field of an algebraic variety over a number field, over a finite field,
or over an algebraically closed field.

Let C ⊂ P4 be a quintic genus one curve over k with no k-rational points. Then there
exist crepant birational maps φ, π, ψ, ψ′, η, η′ and

σ := η′ ◦ ψ′ ◦ φ ◦ π−1 ◦ ψ−1 ◦ η−1

with the following commutative diagram

(4.2)

(C ⊂ Q,Q1 +H1) (C ′ ⊂ P3, H2 + S1)

(P3, S2 +H3) (P3, S4 +H5)

(P3, H4 + S3) (P3,∆3)

(P3,∆3)

φ

π ψ′

ψ η′

η σ

where

• Q is a smooth quadric threefold containing C,
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• C ′ is k-isomorphic to Jac2(C), which is a quintic genus one curve not k-
isomorphic to C,

• Q1 is a smooth quartic del Pezzo surface,
• H1 is a quadric surface cone, i.e., a cone over a smooth conic,
• S2 and S1 are cubic surfaces with one A1-singularity,
• S3 and S4 are cones over the union of a line and a smooth conic intersecting
transversally,

• Hi are planes in P3 for i = 2, 3, 4, 5,
• (P3,∆3) is the standard toric pair.

In particular, σ is a crepant birational automorphism of the standard 3-dimensional
toric pair (P3,∆3) with

0 ̸= c(σ) = c(φ) ∈ DivBurn2(k).

The rest of the section is devoted to a constructive proof of Proposition 4.1. We
construct the crepant birational maps in the diagram (4.2) in different subsections.

4.1. Constructing the boundary. First, note that under our assumption of k, there
indeed exist quintic genus one curves with no k-points [LS24, Lemma 3.8]. For any
such curve C, let Q be a general smooth quadric threefold containing C, and φ the
birational map (4.1) between Q and P3. To extend φ to a map between log CY pairs,
we find the boundary divisors as follows:

(1) Pick a general plane H2 in P3. The intersection H2∩C ′ is a Gal(k̄/k)-invariant
set consisting of five k-points. Since H2 is chosen generally, we may assume
that the five points are in general position on H2.

(2) Let Q1 be the strict transform of H2 under φ−1. Then Q1 is a smooth quartic
del Pezzo surface (cf. [SR49, Chapter VII, 5.2]).

(3) The strict transform under φ of the unique conic passing through the five points
in H2 ∩ C ′ is a k-line l in Q1. Pick a general k-point q on l. Let H1 be the
quadric cone consisting of all lines in Q passing through q.

(4) Let S1 be the image of H1 under φ. Recall that H1 is a hyperplane section of
Q, so the surface S1 is a cubic surface in P3. Since q is chosen generally, we
know that S1 is the blowup of H1 in five general points. It follows that S1 is a
cubic surface with one A1-singularity.

Note that under these choices, the curve C is contained in Q1 but not in H1, and C
′ is

in S1 but not in H2. It follows that φ extends to a crepant birational map

φ : (Q,Q1 +H1) 99K (P3, H2 + S1)

with

0 ̸= c(φ) = (C × P1, 0)− (C ′ × P1, 0) ∈ DivBurn2(k).
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4.2. Constructing the map π. Note thatQ1∩H1 is a curve of degree 4 and arithmetic
genus 1 containing a k-line l. By generality assumptions on H2 and Q1, we know that
Q1 ∩H1 is a union of l and a twisted cubic R meeting at two points. Moreover, one of
the two points is the vertex of the quadric cone H1 since all twisted cubics in a quadric
cone pass through its vertex. It follows that the the other intersection point of l ∩ R
is a k-rational smooth point p on H1. Again, by the generality assumptions, p belongs
to only one line on Q1. Let π be the projection map from p. We obtain a crepant
birational map over k:

π : (Q,Q1 +H1) 99K (P3, S2 +H3).

The map π birationally transforms Q to P3 and the quadric cone H1 to a plane H3.
The image of Q1 under π is a cubic surface S2 with an A1-singular point q2. Indeed,
the line l is a (−1)-curve in Q1. When restricted to Q1, the map π blows up the point
p and contract the strict transform of l to q2. The intersection S2 ∩ H3 consists of a
smooth conic and a line meeting transversally at two k-rational points. The conic is
the image of the twisted cubic R under π, and the line comes from the exceptional
curve above p. It follows from Lemma 2.1 that the pairs (Q,Q1+H1) and (P3, S2+H3)
are lc, and

coreg(P3, S2 +H3) = 0.

As a birational map between Q and P3, π is a composition of the blowup of p and the
contraction of the strict transform of H1 in Blp(Q) to a conic. It follows that

c(π) = (P2, 0)− (F2, 0) = 0.(4.3)

4.3. Constructing the maps ψ and ψ′. Recall that the line l is contracted to the
k-rational singular point q2 of S2. It follows that q2 ∈ S2∩H3 has multiplicity 3 on the
divisor S2 +H3. The following construction is due to Ducat [Duc24, Section 5.1]. We
present the details here to make sure it is defined over k. Up to a change of variables,
we may assume q2 = [1 : 0 : 0 : 0] and S2 +H3 is given by equations

S2 = {x1f2 + f3 = 0} ⊂ P3
x1,x2,x3,x4

, H3 = {x2 = 0} ⊂ P3
x1,x2,x3,x4

where f2 and f3 are polynomials of degree 2 and 3 in variables x2, x3, x4 over k. Note
that since q2 is an A1-singularity, we know that f2 is irreducible. Consider the map ψ
given by

ψ : (P3, S2 +H3) 99K (P3, H4 + S3),(4.4)

(x1 : x2 : x3 : x4) 7→ (x1 +
f3
f2

: x2 : x3 : x4)

where the new boundary divisor is given by

S3 = {x2f2 = 0}, H4 = {x1 = 0}.
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We check (in the affine chart x4 = 1) that ψ preserves the volume forms corresponding
to the respective boundary divisors in (4.4)

ψ∗
(
dx1 ∧ dx2 ∧ dx3

x1x2f2

)
=

d(x1 + f3f
−1
2 ) ∧ dx2 ∧ dx3

(x1 + f3f
−1
2 )x2f2

=
dx1 ∧ dx2 ∧ dx3
x2(x1f2 + f3)

.

It follows that ψ is a crepant birational map. In particular, S3 ∩H4 is the union of a
line and a smooth conic. Since the pair (P3, H4 + S3) is lc, the line and the conic meet
at two distinct points. Both of the two points are k-rational since S2 ∩ H3 being the
union of a line and a conic implies that f2(0, x3, x4) is reducible over k. The inverse
map of ψ is given by

ψ−1 : (x1 : x2 : x3 : x4) 7→ (x1 −
f4
f3

: x2 : x3 : x4).

It is not hard to see that the exceptional divisors of ψ and ψ−1 are the same and thus

c(ψ) = 0.(4.5)

The map ψ′ is constructed in the same way: since the singular point q of H1 lies on Q1,
its image q1 under φ is a singular point of the cubic surface S1 which lies on the plane
H2. It follows that q1 has multiplicity 3 in H2 + S1. The intersection of H2 ∩ S1 is also
a union of a line and a smooth conic, which is the image under φ of the twisted cubic
R and the the line l respectively. Therefore the configurations of the divisors H2 + S1

and S2 + H3 are identical. Applying the same construction of ψ, we obtain a similar
crepant birational map

ψ′ : (P3, H2 + S1) 99K (P3, S4 +H5)

with

c(ψ′) = 0.(4.6)

As above, H5∩S4 is a union of a line and a conic intersecting at two k-rational points,
S4 is a cone over this reducible curve and H5 is a plane.

4.4. Constructing the maps η and η′. By [Duc24] (in particular the proof of The-
orem 1.2 and Example 1.3 there), there exists a crepant birational map:

η1 : (P3, S3 +H4) 99K (P1 × P2,∆′),

where (P1 × P2,∆′) is the toric model with

∆′ =
(
{0} × P2

)
+
(
{0} × P2

)
+
(
P1 × E

)
and E is a union of three lines forming a triangle in P2. Similarly as above, one can
check that η1 is defined over k. On the other hand, since S4 + H5 is of the same
configuration, there exists a similar crepant birational map over k

η′1 : (P3, S4 +H5) 99K (P1 × P2,∆′)

such that

c(η−1
1 ) + c(η′1) = 0.
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Consider the crepant birational map

η2 : (P1
u1,u2

× P2
t1,t2,t3

,∆′) 99K (P3,∆3)

(u1 : u2)× (t1 : t2 : t3) 7→ (1 :
u2
u1

:
t2
t1

:
t3
t1
)

where (P3,∆3) is the standard toric pair. Then put

η = η2 ◦ η1, η′ = η2 ◦ η′1,

we obtain the desired maps

η : (P3, S3 +H4) 99K (P3,∆3), η′ : (P3, S4 +H5) 99K (P3,∆3)

with

c(η−1) + c(η′) = c(η−1
1 ) + c(η′1) = 0.(4.7)

4.5. Proof of Proposition 4.1. Put

σ := η′ ◦ ψ′ ◦ φ ◦ π−1 ◦ ψ−1 ◦ η−1.

Then σ is a crepant birational automorphism over k of the standard toric pair (P3,∆3).
Combining (4.3), (4.5), (4.6) and (4.7), we conclude that

0 ̸= c(σ) = c(φ) = (C × P1, 0)− (C ′ × P1, 0) ∈ DivBurn2(k).

Corollary 4.2. Under the same assumption on the field k as in Proposition 4.1, there
exists a volume preserving birational automorphism σ′ over k of the pair [P3, ω3], where
ω3 is the standard torus invariant volume form, such that

0 ̸= c(σ′) ∈ Burn2(k).

In particular, Birk(Pn, ωn) is not generated by pseudo-regularizable elements for n ≥ 3.

Proof. Let σ be the crepant birational automorphism of the standard toric pair with
c(σ) ̸= 0 constructed in Proposition 4.1. By Corollary 2.12, there exists a positive
integer N such that σN is a volume preserving birational automorphism of [P3, ω3].
Put σ′ = σN . Remark 3.4 shows that

0 ̸= c(σ′) = N · ([C × P1, 0]− [C ′ × P1, 0]) ∈ Burn2(k).

The map σ′ naturally extends to a volume preserving birational automorphism of the
pair [P3 × Pr, ω3 ∧ ωr] over k with the identity map on Pr for r ≥ 0, and thus also to a
volume preserving birational automorphism σ̃ of the pair [P3+r

k , ω3+r]. Since C and C ′

are not stably birational over k, we know that

0 ̸= c(σ̃) = N · ([C × Pr+1, 0]− [C ′ × Pr+1, 0]) ∈ Burnr+2(k).

The last assertion then follows from Example 3.5. □
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Corollary 4.3. Under the same assumption on the field k as in Proposition 4.1, and
for n ≥ 3, there exists a surjective homomorphism

Birk(Pn, ωn) → A

where A ≃
⊕

J Z and J is a set of the same cardinality as k. In particular, Birk(Pn, ωn)
is not simple when n ≥ 3.

Proof. Let I be the set of isomorphism classes of quintic genus one curves C with no
k-points. By [LS24, Lemma 3.8], the set I has the cardinality of k. Let J be the set of
unordered pairs

J := {(C, Jac2(C)) : C ∈ I}.
Then J also has the cardinality of k. Put

A′ :=
⊕

(C,Jac2(C))∈J

Z ·
(
[C × Pn−2, 0]− [Jac2(C)× Pn−2, 0]

)
⊂ Burnn−1(k).

Since distinct elements in I are not stably birational to each other, we have A′ ≃
⊕

J Z.
Consider the projection map

pr : Burnn−1(k) → A′.

Then the image of the map

pr ◦ c : Birk(Pn, ωn) → A′

is a free abelian group A also isomorphic to
⊕

J Z. □

Remark 4.4. The study of varieties over nonclosed fields is closely related to that of
finite group actions on varieties over algebraically closed fields. In particular, one can
find an action of the cyclic group C5 on a quintic elliptic curve C with no G-fixed points,
where C is realized as a linear section of the Grassmannian Gr(2, 5), see e.g., [KT22,
Example 10], [CTZ24, Section 6]. There is a C5-equivariant diagram similar to that in
(4.2): all pertinent geometric objects appearing in the construction can be chosen to
be C5-equivariant. This extends the construction of a nontrivial equivariant birational
invariant cG, introduced in [KT22, Section 7], to the context of log Calabi-Yau pairs.

5. P4 with K3 surfaces

Throughout this section, we work over k = C. The goal is to construct a crepant
birational automorphism σ of the standard toric pair (P4,∆4) such that c(σ) ̸= 0. The
main ingredient is the Cremona transformation of P4 studied in [HL18]. First, we recall
their construction, see also [LS24, Theorem 3.12].

Theorem 5.1 ([HL18, Theorem 2.1, Theorem 3.1]). Let (RL,Γ) be a general polarized
K3 surface with a polarization Γ such that Γ2 = 12 and let {x1, x2, x3} ⊂ RL be a
general triple of points. The linear system |Γ| defines an embedding RL → P7. Let
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SL ⊂ P4 be the proper transform of RL under the projection P7 99K P4 from the plane
generated by {x1, x2, x3}. Then there exists the following commutative diagram:

(5.1)

X

SL ⊂ P4 P4 ⊃ SM

πMπL

ψ

where

(1) ψ is a birational map given by the linear system L1 of quartics containing SL.
The base locus Bs(L1) = SL;

(2) ψ−1 is also given by a linear system L2 of quartics, where Bs(L2) is a surface
SM . Similarly, there exists a K3 surface RM of degree 12 and three points
{x′1, x′2, x′3} on RM such that SM ⊂ P4 is the proper transform of RM under the
projection P7 99K P4 from the plane generated by {x′1, x′2, x′3};

(3) SL and SM are non-normal surfaces of degree 9. The singular locus of each sur-
face consists of three transverse double points, denoted by Sing(SL) = {p1, p2, p3}
and Sing(SM) = {q1, q2, q3};

(4) πL is the blow up of SL, πM is the blow up of SM .

Furthermore, if Pic(RL) = Z · Γ, then RM is the unique Fourier–Mukai partner of RL

which is not isomorphic to RL.

Corollary 5.2. Let ψ be the Cremona transformation constructed in Theorem 5.1 from
a very general K3 surface of degree 12. One has

0 ̸= c(ψ) = [SL × P1]− [SM × P1] ∈ Burn3(C).(5.2)

Proof. By Torelli theorem, the Picard rank of a very general projective K3 surface of
degree 12 over C is 1. By Theorem 5.1, we know that SL is not isomorphic to SM . It
follows that SL and SM are not stably birational, since stably birational K3 surfaces
are isomorphic. From diagram (5.1), we see that c(ψ) = [SL×P1]− [SM ×P1] ̸= 0. □

Remark 5.3. When Pic(RL) = Z · Γ, we call the map ψ in Theorem 5.1 an HL-
Cremona transformation. We refer to an HL-Cremona transformation constructed from
a very general K3 surface of degree 12 as a very general HL-Cremona transformation.
For a very general HL-Cremona transformation, we may assume that the span of the
singular points p1, p2, p3 of the surface SL (resp., q1, q2, q3 of the surface SM) is a plane
in P4, denoted by ΠL (resp., ΠM). In addition, we may also assume that the ΠL

intersects SL (resp., ΠM intersects SM) in a zero-dimensional set. To justify these
assumptions, one can check that they are open conditions which hold in the explicit
example constructed in [HL18, Section 2]. Therefore they are also true for a very
general HL-Cremona transformation. In what follows, we work with a very general
HL-Cremona transformation.

Proposition 5.4. Let ψ be a very general HL-Cremona transformation. Then there
exist hyperplanes HL and HM , and quartic hypersurfaces BL and BM in P4 such that
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ψ extends to a crepant birational map between log Calabi-Yau pairs

ψ : (P4, HL +BL) 99K (P4, HM +BM).

Moreover, there exist crepant birational maps φ, φ′, η, η′ and

σ := η′ ◦ φ′ ◦ ψ ◦ φ−1 ◦ η−1

with the following commutative diagram

(5.3)

(SL ⊂ P4, HL +BL) (SM ⊂ P4, HM +BM)

(P4,ΞL + Ξ′
L + ZL) (P4,ΞM + Ξ′

M + ZM)

(P4,∆4) (P4,∆4)

ψ

φ φ′

η η′

σ

where

• ΞL,Ξ
′
L,ΞM ,Ξ

′
M are hyperplanes in P4,

• ZL and ZM are cones over smooth cubic surfaces,
• (P4,∆4) is the standard toric pair.

In particular, σ is a crepant birational automorphism of the standard 4-dimensional
toric pair (P4,∆4).

Proposition 5.5. Let σ be the map as in Proposition 5.4. Then we have

0 ̸= c(σ) ∈ DivBurn3(C).
The rest of the section is devoted to a constructive proof of Proposition 5.4, with

the construction of each map in the diagram (5.3) explained in different subsections.
We begin with a detailed analysis of the geometry of HL-Cremona transformations.

5.1. Geometry of HL-Cremona transformations. Here we recall some facts from
[HL18]. First, there is a factorization of πL into a sequence of blowups in smooth
centers, as in the following diagram extending (5.1):

(5.4)

P ′

P X

SL ⊂ P4 P4 ⊃ SM

ξLβL

αL πMπL

ψ

where
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• P is the blowup of P4 at three singular points p1, p2, p3 of SL. Let E1, E2, E3 be
the corresponding exceptional divisors, and S ′

L be the strict transform of SL in
P . Then Ei ≃ P3 and S ′

L intersects Ei in two skew lines, for i = 1, 2, 3;
• P ′ is the blowup of P along S ′

L. Denote by E the exceptional divisor of βL. We
denote the strict transform of E1, E2 and E3 by E ′

1, E
′
2 and E ′

3, respectively.
Then E ′

i is isomorphic to P3 blown up along two skew lines, and thus E ′
i has

the structure of a P1-bundle over P1 × P1, for i = 1, 2, 3;
• The map ξL : P

′ → X is a blowdown of each E ′
i to a surface Qi ⊂ X where

Qi ≃ P1 × P1. Let EX be the image of E on X. By construction, each Qi is
contained in EX . Note that πL(Qi) = pi and EX is the exceptional divisor of
πL. Let Ki = π−1

M (qi), i = 1, 2, 3. By symmetry, each Ki is also isomorphic to
P1 × P1.

We also have the following diagram involving the K3 surface RL

(5.5)

S ′
L ΣL RL

SL

κ

αL
ν

µ

π

where

• π is a projection from 3 general points on RL;
• µ is the blow up of these 3 points, i.e., the base locus of π;
• ν is the normalization which maps some points pi,j to the transverse double
points pi, for j = 1, 2, i = 1, 2, 3;

• κ is the blow up of the points pi,j for i = 1, 2, 3, j = 1, 2;
• αL is as in the diagram (5.4).

A diagram similar to (5.5) exists for the surface SM , so in what follows we will freely
use the notation S ′

M , ΣM , RM .
Here we introduce more notation. Let ΓL be the image under ν in SL of the polar-

ization of RL, and Γ̃L its preimage in X via the map πL. Similarly, ΓM and Γ̃M refer to
the corresponding objects coming from RM . Denote by F1, F2 and F3 the images in SL
of the µ-exceptional curves under ν, and their preimages in X by F̃1, F̃2, F̃3. Note that
F1, F2 and F3 are (−1)-curves on SL. By symmetry, there are also three (−1)-curves
on SM . We refer to them as G1, G2, G3, and to their preimages in X as G̃1, G̃2, G̃3. We
also denote by L (resp., M) the class of a general hyperplane section on P4 containing
SL (resp., SM). Let LX (resp., MX) be the pullback of the class L (resp., M) to X.
For clarity, we collect notation that we will use for the remainder of this section.

• L, M : general hyperplane sections on P4;
• F1, F2, F3: (−1)-curves on SL;
• G1, G2, G3: (−1)-curves on SM ;
• ΓL, ΓM : images of polarizations of RL and RM in SL and SM ;
• Γ̃L, Γ̃M , F̃i, G̃i: preimages of ΓL,ΓM , Fi, Gi in X;
• Q1, Q2, Q3: quadric surfaces in X above p1, p2, p3;
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• K1, K2, K3: quadric surfaces in X above q1, q2, q3;
• E1, E2, E3: exceptional divisors in P above p1, p2, p3;
• S ′

L: the strict transform of SL in P ;
• E ′

1, E
′
2, E

′
3: strict transforms of E1, E2, E3 in P ′;

• LX ,MX , L
′,M ′: pullback of L and M in X and P ′ respectively;

• E: the exceptional divisor in P ′ above S ′
L.

Lemma 5.6 ([HL18, Section 3]). Let H4(X,Z)alg be the lattice spanned by the algebraic
classes in the middle cohomology H4(X,Z). Then H4(X,Z)alg is spanned by the classes

L2
X , Γ̃L, F̃1, F̃2, F̃3, Q1, Q2, Q3

with the entries of the intersection matrix given by

L4
X = 1, Γ̃2

L = −12, F̃ 2
i = 1, Q2

i = 1, i = 1, 2, 3 and 0 in other entries.

By symmetry, H4(X,Z)alg is also spanned by the classes coming from SM :

M2
X , Γ̃M , G̃1, G̃2, G̃3, K1, K2, K3

with a similar intersection matrix. The two sets of generators are related by

M2
X

Γ̃M
G̃1

G̃2

G̃3

K1

K2

K3


=



7 −3 4 4 4 2 2 2
36 −17 24 24 24 12 12 12
4 −2 3 3 3 2 1 1
4 −2 3 3 3 1 2 1
4 −2 3 3 3 1 1 2
2 −1 2 1 1 1 1 1
2 −1 1 2 1 1 1 1
2 −1 1 1 2 1 1 1





L2
X

Γ̃L
F̃1

F̃2

F̃3

Q1

Q2

Q3


Lemma 5.7 ([HL18, Corollary 2.2]). Intersection theory on P ′ is as follows:

L′E ′
i = 0, E3E ′

i = −4, E2(E ′
i)

2 = 2, E(E ′
i)

3 = 0, (E ′
i)

4 = −1, (L′)3E = 0.

The following lemmas are crucial to our constructions.

Lemma 5.8. Let ΠL be the plane in P4 spanned by the singular points pi of SL, with
1 ≤ i ≤ 3. Then the class Π̃L ∈ H4(X,Z)alg of the strict transform of ΠL in X under
πL equals to

Π̃L = L2
X −

3∑
i=1

Qi.

Proof. By Remark 5.3, we know that p1, p2, p3 indeed span a plane in P4. By [Sta18,
Section 0B0I], the pullback π∗

L(ΠL) of the class ΠL is equal to the class of the scheme-
theoretic preimage π−1

L (ΠL) (where we consider only components of codimension 2).

https://stacks.math.columbia.edu/tag/0B0I
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Since ΠL intersects SL in a zero-dimensional set containing p1, p2, p3 by Remark 5.3,
going along the left side of the diagram (5.4), we find

Π̃L +
3∑
i=1

Qi = π∗
L(ΠL) = π∗

L(L
2) = (π∗

L(L))
2 = L2

X .

□

Lemma 5.9. Let ΠL be the plane spanned by the singular points p1, p2, p3 of SL, and
ΠM be the plane spanned by the singular points q1, q2, q3 of SM . Then the strict trans-
form ψ∗ΠL is equal to ΠM .

Proof. Let Π̃L be the strict transform of ΠL on X. By Lemma 5.8, its class in
H4(X,Z)alg equals to L2

X −
∑3

i=1Qi. Using Lemma 5.6, one can compute

M2
X(L

2
X −

3∑
i=1

Qi) = 1.

This implies that πM maps Π̃L to a plane in P4. Lemma 5.6 also shows that

L2
X −

3∑
i=1

Qi =M2
X −

3∑
i=1

Ki.

Intersecting this class with Ki, we find that the intersection number is nonzero for each
i = 1, 2, 3, and thus the plane ψ∗ΠL contains the singular points q1, q2, q3. It follows
that ψ∗ΠL = ΠM . □

Lemma 5.10. The image πM(Qi) is a smooth quadric surface containing singular
points qj of SM for i, j = 1, 2, 3. Similarly, the image πL(Ki) is a smooth quadric
surface containing singular points pj of SL for i, j = 1, 2, 3.

Proof. By symmetry, it suffices to prove the first assertion. By Lemma 5.6, we have
QiM

2 = 2, so M |Qi
is a linear system of degree 2 on Qi = P1 × P1 that defines a

morphism (πM)|Qi
. Thus, (πM)|Qi

is an isomorphism and πM(Qi) is a smooth quadric
surface in P3 ⊂ P4.

Next, we prove that πM(Qi) contains the points qj for j = 1, 2, 3. It suffices to show
that the intersection Qi ∩Kj is non-empty for any i, j = 1, 2, 3. Indeed, using Lemma
5.6, we compute the intersection numbers:

QiKj = Qi

(
2L2

X − Γ̃L + Fj +
3∑

k=1

(F̃k +Qk)

)
= 1, i, j = 1, 2, 3.

□

5.2. Constructing the boundaries. We retain the notation above. Let

ψ : P4 99K P4

be a very general HL-Cremona transformation. We seek divisors DL and DM such that
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• (P4, DL) and (P4, DM) are log CY pairs admitting toric models, and
• ψ extends to a crepant birational map of pairs (P4, DL) 99K (P4, DM).

To achieve this, we construct DL and DM as follows:

(1) Pick the singular point p1 of SL. Consider the quadric surface Q1 in X above p1.
Lemma 5.10 shows that πM(Q1) is a smooth quadric surface in P4. LetHM = P3

be the unique hyperplane in P4 containing πM(Q1), and BL the strict transform
ψ−1
∗ (HM). Note that BL is a quartic hypersurface in P4 containing SL;

(2) We proceed by symmetry: pick the singular point q1 of SM . Consider the
quadric surface K1 above q1. Its image πL(K1) is a quadric surface in P4.
Let HL = P3 be the unique hyperplane containing πL(K1), and BM the strict
transform ψ∗(HL). Similarly, BM is a quartic hypersurface containing SM ;

(3) Put DL = HL + BL and DM = HM + BM . By construction, one has the
inclusions

(5.6) πM(Q1) ⊂ HM , πL(K1) ⊂ HL, SL ⊂ BL and SM ⊂ BM .

By symmetry, the same construction starting from other singular points of SL and
SM will produce the same results. Without loss of generality, we work with the choice
of p1 and q1.
By construction, SL is contained in BL but not in HL, and SM is contained in BM

but not in HM . It follows that ψ extends to a crepant birational map of the CY pairs

ψ : (P4, HL +BL) 99K (P4, HM +BM).

In the following subsections, we construct crepant birational maps from these two pairs
to the standard toric pairs.

5.3. Computing the strata. Here we compute the strata BL ∩ HL and BM ∩ HM

from our construction above.

Lemma 5.11. We have the inclusions ΠL ⊂ BL, and ΠM ⊂ BM .

Proof. First, recall from (5.6) that πM(Q1) ⊂ HM . On the other hand, it follows
from Lemma 5.10 that qi ∈ πM(Q1) for i = 1, 2, 3. This implies that ΠM ⊂ HM and
ψ−1
∗ (ΠM) ⊂ ψ−1

∗ (HM). By Lemma 5.9, we know ψ−1
∗ (ΠM) = ΠL. By construction, we

have ψ−1
∗ (HM) = BL. This shows ΠL ⊂ BL. By symmetry, ΠM ⊂ BM also holds. □

Lemma 5.12. Let H ⊂ P4 be any hyperplane section such that pi ∈ H for all i = 1, 2, 3.
Let HX be the strict transform of H on X. Then Qi ⊂ HX for i = 1, 2, 3. In particular,
this implies that

πM(Qi) ⊂ BM and πL(Ki) ⊂ BL for i = 1, 2, 3.

Proof. Let HP be the strict transform of H on P as in diagram (5.4). Fix i ∈ {1, 2, 3}.
Observe that the intersection Ψ = HP ∩ Ei is a plane in Ei ≃ P3, where Ei is the
exceptional divisor over pi. Note that Ei ∩ S ′

L is a union of two skew lines li,1, li,2 in
Ei ≃ P3 where S ′

L is the strict transform of SL ⊂ P4 on P . Two cases are possible:
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either both skew lines li,1, li,2 intersect the plane Ψ transversally, or one of the skew
lines is contained in Ψ.

Start with the first case. After the blow up βL : P
′ → P , the strict transform Ψ′ of

Ψ is a del Pezzo surface of degree 7 which surjects to Qi under the map ξL : P → X.
Thus, the strict transform HX of H on X contains Qi, as is claimed.
Then we show the second case is impossible. Without loss of generality, assume

li,1 ⊂ Ψ. This implies that the hyperplane H contains one of the two branches of the
surface SL near the point pi, which is a contradiction since SL is not contained in a
hyperplane, and H intersects SL in a curve. □

Proposition 5.13. The point p1 has multiplicity 3 in BL. The point q1 has multiplicity
3 in BM .

Proof. By symmetry of the construction, it suffices to prove this claim for the point p1
on BL. Let d be the multiplicity of p1 in BL. Since BL is a quartic, we have d ≤ 4. We
exclude the cases d = 1, 2 and 4.
We keep the notation in diagram (5.4). Let B′

L be the strict transform of BL on P .
Note that since SL ⊂ BL, we have S

′
L ⊂ B′

L. Then the intersection of B′
L with E1 = P3

is a degree d surface in E1 containing two skew lines S ′
L ∩ E1. This implies d ≥ 2.

Assume d = 2. Then N1 = B′
L ∩E1 is a quadric surface containing these skew lines.

Hence N1 is either a smooth quadric, or a union of two planes. Indeed, the cases of a
quadric cone and a double plane are excluded since these surfaces in P3 cannot contain
a pair of skew lines.

Assume that N1 is a smooth quadric surface P1 × P1. Note that, in this case, B′
L is

smooth near N1. One checks that the image of N1 under the map (induced from 5.4)

(ξL ◦ β−1
L ) |E1 : E1 → P1 × P1

is P1. This implies that the strict transform of BL in X, which equals to the strict
transform of HM on X, does not contain the quadric surface Q1. This contradicts to
(5.6) stating that πM(Q1) ⊂ HM . So N1 is not a smooth quadric surface.
Assume now that N1 is a union of two planes containing two skew lines S ′

L ∩ P3.
Note that B′

L is smooth at the generic points of these lines. As above, we show that

(ξL ◦ β−1
L ) |E1 (N1) ̸= P1 × P1.

Indeed, the intersection of the strict transform of B′
L in P ′ and E ′

1 consists of the
strict transform N ′

1 of N1 on P ′, which is a union of two Hirzebruch surfaces F1, and
two exceptional divisors of the map E ′

1 → E1. Neither of these 4 components maps
surjectively to P1×P1 under the map ξL |E′

1
: E ′

1 → P1×P1. This implies that the strict
transform of BL in X does not contain the quadric surface Q1, which is a contradiction
as is explained above. It follows that d ≥ 3.
Assume that d = 4. Then BL is a cone over a surface of degree 4, and p1 is its

vertex. By Lemma 5.11, we have that p1 ∈ HL. Then BL ∩ HL is a cone over some
curve. By Lemma 5.12 and the construction of HL, we know that BL ∩ HL contains
the smooth quadric surface πL(K1). However, a smooth quadric is not a cone, which
is a contradiction. It follows that d ̸= 4. □
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Remark 5.14. Proposition 5.13 implies that the exceptional divisor over p1 in Blp1BL

is a cubic surface. For a very general HL-Cremona transformation, we may assume
the cubic surface is smooth. Indeed, one can check that this is an open condition and
holds for the specific example given in [HL18].

Proposition 5.15. For a very general HL-Cremona transformation, the boundary di-
visors constructed in Section 5.2 satisfy

BL ∩HL = πL(K1) ∪ ΠL ∪ ΛL

= P1 × P1 ∪ P2 ∪ P2,

where K1 is the quadric surface over the point q1; ΠL is the plane spanned by p1, p2, p3;
and ΛL is a plane different from ΠL. By symmetry, we also have

BM ∩HM = πM(Q1) ∪ ΠM ∪ ΛM

= P1 × P1 ∪ P2 ∪ P2

where Q1 is the quadric surface over the point p1; ΠM is the plane spanned by q1, q2, q3;
and ΛM is a plane different from ΠL.

Proof. It suffices to show the first assertion. First, recall that by construction, we have
HL ⊃ πL(K1). Lemma 5.10 implies that HL ⊃ ΠL. Lemma 5.11 and 5.12 show that
BL ⊃ ΠL and BL ⊃ πL(K1) respectively. Therefore BL ∩ HL contains πL(K1) ∪ ΠL.
Since BL ∩ HL is a degree four surface, there is a residual component ΛL isomorphic
to P2 in the intersection.

It remains to check that ΛL is different from ΠL, or equivalently, BL∩HL is reduced.
Recall from Section 5.2 that once we make a choice of points p1 ∈ SL and q1 ∈ SM ,
the boundary BL +HL (and thus the intersection BL ∩HL) is canonically defined. It
follows that the quartic surface BL∩HL ⊂ HL being reduced is an open condition, and
one can check that it holds for the specific example given in [HL18]. Thus, for a very
general HL-Cremona transformation, BL ∩HL is reduced, and the claim follows. □

We will use the following fact in the next subsection.

Lemma 5.16. The point p1 (resp., q1) lies on the plane ΛL (resp., ΛM) appearing in
Proposition 5.15.

Proof. It suffices to show p1 ∈ ΛL. Recall from Proposition 5.13 that p1 has multiplicity
3 on BL. Up to a change of variables, we may assume that p1 = [1 : 0 : 0 : 0 : 0] and
HL +BL is given by the equation

{x5(x1h3 + h4) = 0} ⊂ P4
x1,...,x5

where hk is a k-form over k in variables x2, x3, x4, x5 for k = 3, 4. Now assume p1 is
not in ΛL, i.e., ΛL is given by the equation

{x1 + l(x2, x3, x4, x5) = 0} ⊂ P4
x1,...,x5

for some linear form l. The inclusion ΛL ⊂ BL ∩HL implies that

h4(x2, x3, x4, 0) = l(x2, x3, x4, 0) · h3(x2, x3, x4, 0).
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It then follows from Proposition 5.15 that

πL(K1) ∪ ΠL = {h3(x2, x3, x4, 0) = 0} ⊂ P3
x2,x3,x4,x5

,

which is a contradiction since πL(K1) is a smooth quadric surface and not a cone.
Therefore we conclude p1 ∈ ΛL. □

5.4. Constructing the maps φ and φ′. The constructions of φ and φ′ are in sym-
metry. We construct φ in detail. It is a higher-dimensional analogue of the map (x) in
[Duc24, Section 5.1]. Similar as above, since the point p1 has multiplicity 3 on BL, we
may assume p1 = [1 : 0 : 0 : 0 : 0] and the equation of DL is given by

DL = HL +BL = {h1(x1h3 + h4) = 0} ⊂ P4
x1,...,x5

where hk is a k-form in variables x2, x3, x4, x5 not divisible by x2, for k = 1, 3, 4. Now
consider the map

φ : (P4, DL) 99K (P4, D′
L),

(x1 : x2 : x3 : x4 : x5) 7→ (x1 +
h4
h3

: x2 : x3 : x4 : x5),

where the new boundary divisor D′
L has components given by equations

D′
L = ΞL + Ξ′

L + ZL, ΞL = {x1 = 0}, Ξ′
L = {h1 = 0}, ZL = {h3 = 0}.(5.7)

By Remark 5.14, ZL is a cone over a smooth cubic surface. Let

ωDL
=

dx1 ∧ dx3 ∧ dx4 ∧ dx5
h1(x1h3 + h4)

and ωD′
L
=

dx1 ∧ dx3 ∧ dx4 ∧ dx5
x1h1h3

be two logarithmic volume forms in the affine chart x2 = 1 of P4
x1,...,x5

such that
div(ωDL

) = −DL and div(ωD′
L
) = −D′

L. One can check that φ preserves these two
forms:

φ∗(ωD′
L
) =

d(x1 + h4h
−1
3 ) ∧ dx3 ∧ dx4 ∧ dx5

h1h3(x1 + h4h
−1
3 )

=
dx1 ∧ dx3 ∧ dx4 ∧ dx5

h1(x1h3 + h4)
= ωDL

.

It follows that φ is a crepant birational map; its inverse is given by

φ−1 : (x1 : x2 : x3 : x4 : x5) 7→ (x1 −
h4
h3

: x2 : x3 : x4 : x5),

and the exceptional divisors of φ and φ−1 satisfy

Exc(φ) = Exc(φ−1).

It follows that

c(φ−1) = 0.(5.8)

The following lemma in crucial in the next subsection.

Lemma 5.17. The intersection ΞL ∩ Ξ′
L ∩ ZL is a union of three lines forming a

triangle on a plane.
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Proof. We keep notation from diagram (5.4) and Proposition 5.13. Let B′
L be the strict

transform of BL in P and H ′
L be that of HL. From equation (5.7), one sees that

ΞL ∩ Ξ′
L ∩ ZL ≃ E1 ∩H ′

L ∩B′
L.

In particular, ZL ∩ ΞL is the smooth cubic surface isomorphic to E1 ∩ B′
L in P , and

ΞL ∩ Ξ′
L is isomorphic to the plane E1 ∩H ′

L.
By Proposition 5.15, we know that HL∩BL has three components ΠL∪ΓL∪πL(K1),

which are two planes and a smooth quadric surface. Lemma 5.16 implies that each
component is smooth at p1, and thus each of their strict transforms in P intersects
with E1 along a line. It follows that E1 ∩H ′

L ∩B′
L consists of three lines in a plane.

Then we show that the three lines do not meet at one point. Assume they do. This
implies that ΠL,ΓL and πL(K1) meet along a line. By Lemma 5.10, ΠL ∩ πL(K1)
contains three points p1, p2 and p3, which contradicts the generality assumption in
Remark 5.3 that p1, p2 and p3 span a plane. Therefore, we conclude that E1∩H ′

L∩B′
L

consists of three lines forming a triangle, and thus the same holds for ΞL∩Ξ′
L∩ZL. □

The construction of φ′ is identical to the process described above, starting from the
singular point q1 ∈ SM . By symmetry, we obtain a similar boundary D′

M consisting
of two hyperplanes ΞM and Ξ′

M together with a cone ZM over a smooth cubic surface.
Lemma 5.17 also holds for ΞM ∩ Ξ′

M ∩ ZM . Similarly, we have

c(φ′) = 0.(5.9)

5.5. Constructing the maps η and η′. As the final step, we construct crepant
birational maps η and η′ from (P4, D′

L) and (P4, D′
M) to the standard toric pair (P4,∆4)

with the standard toric boundary

∆4 = {x1x2x3x4x5 = 0} ⊂ P4
x1,x2,x3,x4,x5

.

The constructions of η and η′ are again symmetric and we focus on η. Recall from
(5.7) that, up to isomorphism, D′

L is given by the equation

D′
L = {x1x2h3(x2, x3, x4, x5) = 0}, deg(h3) = 3.

Without loss of generality, we may assume h3 is not divisible by x5. Consider the map

η1 : (P4, D′
L) 99K (P1 × P3,∆′),

(x1 : x2 : x3 : x4 : x5) 7→ (x1 : x5)× (x2 : x3 : x4 : x5),

where the boundary ∆′ is given by

∆′ =
(
{0} × P3

)
+
(
{∞} × P3

)
+
(
P1 × V

)
, V = {x2h3 = 0} ⊂ P3

x2,x3,x4,x5
.

One can check that η1 preserves the corresponding volume forms (in the affine chart
x5 = 1) ωD′

L
and ω∆′ where div(ω∆′) = −∆′

η∗1(ω∆′) =
dx1 ∧ dx2 ∧ dx3 ∧ dx4

x1x2h3
= ωD′

L
,
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and thus η1 is a crepant birational map. It is not hard to see that the exceptional
divisors of η1 and η−1

1 are rational, and thus we have

c(η1) = r · (P3, 0), for some integer r ≥ 0.(5.10)

Note that V ⊂ P3 is the union of a plane and a smooth cubic surface, where their
intersection is isomorphic to

ΞL ∩ Ξ′
L ∩ ZL ≃ E1 ∩H ′

L ∩B′
L.

By Lemma 5.17, the intersection is a configuration of three lines forming a triangle on
a plane. It follows from Lemma 2.1 that coreg(P3, V ) = 0. By [Duc24, Theorem 1.2],
there exists a crepant birational map:

η2 : (P3, V ) 99K
(
P1 × P2

y1,y2,y3
, ({0} × P2) + (P1 × V ′) + ({∞} × P2)

)
,

where V ′ = {y1y2y3 = 0} ⊂ P2
y1,y2,y3

is the union of three coordinate lines. This yields
a birational map

id× η2 : P1 × P3 99K P1 × P1 × P2,

and a crepant birational map

(id× η2) ◦ (η1) : (P4, D′
L) 99K (P1 × P1 × P2

y1,y2,y3
,∆′′)

with the toric boundary

∆′′ =
(
{0} × P1 × P2

)
+
(
{∞} × P1 × P2

)
+
(
P1 × {0} × P2

)
+

+
(
P1 × {∞} × P2

)
+
(
P1 × P1 × {y1y2y3 = 0}

)
.

Notice that the exceptional divisors of the map id×η2 and its inverse are all birational
to C ′ × P2 for some curves C ′, i.e.,

c(id× η2) =
∑
C′

(C ′ × P2, 0) over finitely many curves C ′.(5.11)

Now, consider the crepant birational map between toric pairs

η4 : (P1
u1,u2

× P1
t1,t2

× P2
y1,y2,y3

,∆′′) 99K (P4
x1,...,x5

,∆4),

(u1 : u2)× (t1 : t2)× (y1 : y2 : y3) 7→ (1 :
u1
u2

:
t1
t2

:
y1
y3

:
y2
y3
)

where
∆4 = {x1x2x3x4x5 = 0} ⊂ P4

x1,...,x5
.

Again, one sees that

c(η4) = r · (P3, 0), for some integer r ≥ 0.(5.12)

Lastly, we obtain a crepant birational map

η := η4 ◦ (id× η2) ◦ (η1), η : (P4, D′
L) 99K (P4,∆4).

The construction above can be applied identically to (P4, D′
M) to obtain a similar map

η′ : (P4, D′
M) 99K (P4,∆4).
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5.6. Proof of Proposition 5.4 and 5.5. Put

σ := η′ ◦ φ′ ◦ ψ ◦ φ−1 ◦ η−1.

Then σ is a crepant birational automorphism of the standard toric pair (P4,∆4). This
completes the proof of Proposition 5.4.

Now we prove Proposition 5.5, i.e., c(σ) ̸= 0. By construction, we have that

c(σ) = c(η′) + c(φ′) + c(ψ) + c(φ−1) + c(η−1).

From (5.8) and (5.9), one sees that

c(φ′) = c(φ−1) = 0.

Recall that
c(ψ) = (SL × P1, 0)− (SM × P1, 0).

Consider the projection

dpr : DivBurn3(C) → Z ·
(
(SL × P1, 0)− (SM × P1, 0)

)
.

By construction, we have

c(η−1) = −c(η1)− c(id× η2)− c(η4).

From (5.10), (5.11) and (5.12), we see that c(η1), c(id × η2) and c(η4) only contain
classes of the form (C ′ × P2, 0) for some curve C ′. It follows that

(dpr ◦ c)(η−1) = (dpr ◦ c)(η′) = 0

since SM ×P1 and SL×P1 are not birational to C ′×P2 for any curve C ′. Indeed, their
MRC quotients are the K3 surfaces RM and RL respectively. Then we know

(dpr ◦ c)(σ) ̸= 0.

This implies that c(σ) ̸= 0.

Corollary 5.18. There exists a volume preserving birational automorphism σ′ of the
pair [P4, ω4], where ω4 is the standard torus invariant volume form, such that

0 ̸= c(σ′) ∈ Burn3(C).
In particular, BirC(Pn, ωn) is not generated by pseudo-regularizable elements for n ≥ 4.

Proof. Let σ be the crepant birational automorphism of (P4,∆4) constructed in Propo-
sition 5.4. It follows from Corollary 2.12 that there exists a positive integer N such
that σN is a volume preserving birational automorphism of [P4, ω4]. Put σ

′ = σN . We
have

0 ̸= c(σ′) = N · c(σ) ∈ Burn3(C)
where c is the Lin-Shinder invariant. By Remark 3.4, we know that

0 ̸= c(σ′) ∈ Burn3(C).
Similar to the proof of Corollary 4.3, the map σ′ extends to a volume preserving
birational automorphism σ̃ of the pair [P4+r, ω4+r] for r ≥ 0 with

0 ̸= c(σ̃) ∈ Burnr+3(C).
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The last assertion then follows from Example 3.5. □

Corollary 5.19. There exists a surjective homomorphism when n ≥ 4 :

BirC(Pn, ωn) → A

where A =
⊕

J Z and J is a set of the same cardinality as C. In particular, BirC(Pn, ωn)
is not simple when n ≥ 4.

Proof. Let I be the set of isomorphism classes of K3 surfaces over C of degree 12
and Picard rank 1 giving rise to a diagram (5.4). Proposition 5.4 shows that an HL-
Cremona transformation associated with a very general such K3 surface gives rise to
such a diagram. It follows that the set I has the cardinality of C [LS24, Lemma 3.8].
Let J be the set of unordered pairs

J := {(S, S ′) : S ∈ I}
where S ′ is the unique Fourier-Mukai partner of S which is not isomorphic to S. Then
J also has the cardinality of C. For n ≥ 4, put

A′ :=
⊕
J

Z · ([S × Pn−3, 0]− [S ′ × Pn−3, 0]) ⊂ Burnn−1(C).

Since distinct elements in I are not stably birational to each other, A′ ≃
⊕

J Z. Con-
sider the projection

pr : Burnn−1(C) → A′.

Then the image of the map

pr ◦ c : BirC(Pn, ωn) → A′

is a free abelian group A also isomorphic to
⊕

J Z.
□
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pages Exp. No. 998, vii, 11–43. 2010. Séminaire Bourbaki. Volume 2008/2009. Exposés
997–1011.

[FG14] Osamu Fujino and Yoshinori Gongyo. Log pluricanonical representations and the abun-
dance conjecture. Compos. Math., 150(4):593–620, 2014.

[HL18] Brendan Hassett and Kuan-Wen Lai. Cremona transformations and derived equivalences
of K3 surfaces. Compos. Math., 154(7):1508–1533, 2018.

[HX16] Christopher D. Hacon and Chenyang Xu. On finiteness of B-representations and semi-log
canonical abundance. In Minimal models and extremal rays (Kyoto, 2011), volume 70
of Adv. Stud. Pure Math., pages 361–377. Math. Soc. Japan, Tokyo, 2016.

[Isk91] Vasily A. Iskovskikh. Generators of the two-dimensional Cremona group over a nonclosed
field. Trudy Mat. Inst. Steklov., 200:157–170, 1991.

[KM98] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties, volume 134
of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998.

[KT19] Maxim Kontsevich and Yuri Tschinkel. Specialization of birational types. Invent. Math.,
217(2):415–432, 2019.

[KT22] Andrew Kresch and Yuri Tschinkel. Burnside groups and orbifold invariants of birational
maps, 2022. to appear in Collino Festschrift, Trends in Mathematics, Birkhäuser.
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