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Abstract. We study linearizability of actions of finite groups on
cubic threefolds with non-isolated singularities.

1. Introduction

Let k be an algebraically closed field of characteristic zero, X a
smooth projective variety over k of dimension n and G ✓ Aut(X) a
subgroup of automorphisms. The G-action on X is linearizable if it
is equivariantly birational to a linear G-action on Pn, and unirational
if X is G-equivariantly dominated by the projectivization of a linear
representation of G.

In [7], [6], [5] and [8], we have addressed the problems of unirational-
ity and linearizability of actions of finite groups on cubic threefolds
with isolated singularities. In this paper, we extend the study of bira-
tional properties of generically free regular actions of finite groups on
singular cubic threefolds to those with non-isolated singularities.

Detailed knowledge of degenerations of cubic threefolds, together
with their automorphisms, plays an important role in moduli theory,
see, e.g., [1], [4]. Indeed, the classification of isolated singularities in [18]
was one of the motivations of our work. Another source of inspiration
comes from arithmetic and birational geometry over nonclosed fields,
as in [10] or [9].

We proceed to describe our strategy: we start by identifying all possi-
bilities for actions and the corresponding normal forms. Roughly, cubic
threefolds with non-isolated singularities are of four types, according to
the geometry of the singular locus: line, conic, plane, twisted quartic.
More precisely, denote by Sing(X) the singular locus of X. Suppose
that dim(Sing(X)) � 1, and X is not a cone. We observe that the
secant variety of Sing(X) is either X or has dimension  2; otherwise,
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X is reducible. Building on this, the possibilities of Sing(X) have been
classified in [19, Proposition 4.2]:

• When dim(Sing(X)) � 2, then Sing(X) is a plane.
• When dim(Sing(X)) = 1 and Sing(X) contains a plane curve,
then the union of one-dimensional components of Sing(X) is
either a line, a smooth conic, or two lines intersecting at a
point.

• When dim(Sing(X)) = 1 and Sing(X) contains a curve not
contained in a plane, then Sing(X) is a smooth rational normal
quartic curve and there is a unique suchX, known as the chordal
cubic, given by

x1x
2
4 + x

2
2x5 � x1x3x5 � 2x2x3x4 + x

3
3 = 0.

We focus on actions not fixing singular points on X, since otherwise,
the actions are linearizable. The resulting cases are analyzed using
a variety of tools from birational geometry, including the connection
between equivariant geometry and geometry over nonclosed fields in
[12]. We also restrict to finite group actions. Our principal results are:

• All actions on cubics singular along a line are linearizable, by
Theorem 3.1.

• All actions on the chordal cubic are linearizable, by Theorem 5.1.
• All actions on cubics singular along a plane are linearizable, by
Theorem 6.2.

• Most actions on cubics singular along a conic are not lineariz-
able, by Theorem 4.3. The linearizability problem of some ac-
tions in this case remains open; see Section 4 for more details.

• All actions on cubic threefolds with non-isolated singularities
are unirational, by Theorem 4.5.

One of the corollaries of classifications in [1], [18], [19], [16] is the
following: if X ⇢ P4 is a K-unstable rational cubic threefold with
isolated singularities and G ✓ Aut(X) is a finite subgroup, then the G-
action on X is linearizable. This is no longer true for cubic threefolds
with non-isolated singularities – there are non-linearizable G-actions
on K-unstable cubic 3-folds singular along a conic; this is also the most
interesting case in arithmetic considerations in [9].
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for its hospitality and for providing a perfect work environment. The
third author was partially supported by NSF grant 2301983.
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2. Tools from birational geometry

We recall the basic terminology: a G-action on Pn is called linear if
it arises from projectivization P(V ) of a G-representation V . We do
not assume that the action on P(V ) is generically free. We will use the
following general results.

Proposition 2.1. Let X = PB(E) be the projectivization of a vector
bundle E of rank n+ 1 over a smooth projective irreducible variety B,
and ⇡ : X ! B the associated Pn-bundle. Assume that X carries
a regular action of a finite group G such that E is G-linearized, and
that the induced action on B is unirational. Then the action on X is
G-unirational.

Moreover, if the G-action on B is linearizable and generically free
then X is linearizable.

Proof. By assumption, there exists a G-representation V such that G
acts generically freely on P(V ), which in turn admits a dominant G-
equivariant rational map to B. Equivariantly resolving indeterminacy

of this map ]P(V ) ! P(V ), we obtain the following G-equivariant dia-
gram:

E

✏✏

Ẽoo

✏✏

B ]P(V )oo

where Ẽ is the pullback of E to ]P(V ). By assumption, the G-action
on PB(E) lifts to E . It follows that Ẽ is a G-linearized vector bundle

over ]P(V ). By the no-name lemma, see, e.g., [13, Theorem 1], Ẽ is

G-equivariantly birational to ]P(V ) ⇥ An+1, with trivial action on the

second factor, as the G-action on ]P(V ) is generically free. It follows
that X = PB(E) is dominated by P(W ), for some G-representation W ,
thus is G-unirational.

The second claim is a projective version of the no-name lemma, see,
e.g., [13, Theorem 1’]. ⇤

Remark 2.2. This proposition applies in particular to actions on prod-
ucts of projective spaces, e.g., P1

⇥ P2 in Section 3, or to a nontrivial
P1-bundle over P2, in Section 5. In general, e.g, when the G-action
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on the base B is not generically free, or does not lift to E , the lin-
earization problem remains a challenge. The linearizability of actions
on (P1)2 was recently settled in [17]; the case of (P1)3 is open.

The following proposition is a version of [8, Propositions 3.1 and 3.5].

Proposition 2.3. Let k be an algebraically closed field of characteristic
0. Let X ⇢ Pn, n � 3, be an irreducible cubic hypersurface over k

which is not a cone, and G ✓ Aut(X) a finite subgroup, acting linearly
on Pn. Assume that X contains a G-invariant subvariety S, which is
G-unirational. Then X is G-unirational.

Proof. By [12, Theorem 1.1], G-unirationality of X is equivalent to the
following property: for every field K/k and every G-torsor T over K,
the twist T

XK of X over K via T is K-unirational. Our assumption
implies that all such twists are cubic hypersurfaces in Pn

K , see [12,
Lemma 10.1]. Every such twist contains a twisted form of S, defined
over K. By assumption and [12, Theorem 1.1], this twisted form of S
is unirational over K and, in particular, has K-rational points. Then
T
XK also has K-rational points and is K-unirational by [15]. ⇤

Remark 2.4. This proposition applies in particular when X contains
a G-invariant linear subspace, e.g., a point, a line, or a plane; we use
it in the proof of Theorem 4.5.

3. Line

Let X ⇢ P4 be an irreducible cubic threefold, singular along a line
l. If Sing(X) contains another positive-dimensional component, then
the action of Aut(X) on X is linearizable; indeed, the other component
must be a line intersecting l in a distinguished singular point. Hence we
assume that l is the only positive-dimensional component of Sing(X).
The main theorem of this section is the following.

Theorem 3.1. Let X be a cubic threefold, singular along a line, and
G ✓ Aut(X) a finite subgroup. Then the G-action on X is linearizable.

A normal form for X is given by

(3.1) x1q1(x3, x4, x5) + x2q2(x3, x4, x5) + c(x3, x4, x5) = 0,

where l = {x3 = x4 = x5 = 0}, q1 and q2 are quadratic forms, and c is a
cubic form, see [19, Proposition 4.2]. We have a natural identification
l = P1

x1,x2
. Let � : P̃ ! P4 be the blowup of l. This yields the
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commutative diagram:

P̃
�

��

$

""

P4 // P2
x3,x4,x5

where $ is a P2-bundle, and the dashed arrow is the projection from l.
Let E be the �-exceptional divisor. Then � and $ induce a natural

isomorphism

E ' l⇥ P2
x3,x4,x5

= P1
x1,x2

⇥ P2
x3,x4,x5

.

Let X̃ be the strict transform of X on the fourfold P̃. We have the
induced Aut(X)-equivariant commutative diagram:

X̃

�|X̃

��

⇡

##

X // P2
x3,x4,x5

where ⇡ = $|X̃ is a morphism such that its fibers are isomorphic either
to P1 or P2. Put S := X̃|E. Then S is a divisor of bi-degree (1, 2) in
E ' P1

x1,x2
⇥ P2

x3,x4,x5
that is given by

x1q1(x3, x4, x5) + x2q2(x3, x4, x5) = 0.

For general q1 and q2, S is a smooth del Pezzo surface of degree 5,
the natural projection S ! P2

x3,x4,x5
is a blowup of 4 points in general

position, and the natural projection S ! P1
x1,x2

is a conic bundle with
3 singular fibers. If q1 and q2 are special, S may be singular.

First, assume that S is smooth. In this case, X can be given by

(3.2) x1(x
2
3 + ⇣3x

2
4 + ⇣

2
3x

2
5) + x2(x

2
3 + ⇣

2
3x

2
4 + ⇣3x

2
5)+

+ a2(x
2
3x4 + x3x

2
4 + x

2
3x5 + x

2
4x5 � x

3
3 � x

3
4)+

+ a1x3x4x5 + a2x3x
2
5 + a3x4x

2
5 + (a4 � 2a2)x

3
5 = 0,

for some a1, a2, a3, a4, the morphism $|S : S ! P2
x3,x4,x5

is a blowup of
the points

(3.3) [1 : 1 : 1], [1 : 1 : �1], [1 : �1 : 1], [�1 : 1 : 1],
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and the singular fibers of the conic bundle �|S : S ! l lie over the
points

(3.4) [1 : �1 : 0 : 0 : 0], [1 : �⇣3 : 0 : 0 : 0], [1 : �⇣
2
3 : 0 : 0 : 0].

Let G ✓ Aut(X) be a finite subgroup. The set of points in (3.4)
must be a G-orbit of length 3, unless one of them is fixed by G. Note
that the image of G in Aut(l) ' PGL2(k) is contained in the subgroup
isomorphic to S3, generated by

(x1, x2) 7! (x2, x1)(3.5)

and
(x1, x2) 7! (⇣3x1, ⇣

2
3x2).

Since this subgroup has an orbit of length 2 consisting of the points
[1 : 0] and [0 : 1], we see that the points

[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0]

form a G-orbit in l of length 2, unless both are fixed by G. This allows
us to classify all automorphism groups:

Proposition 3.2. Let X be a cubic threefold singular along a line and
such that the associated degree-5 del Pezzo surface is smooth. Assume
that Aut(X) does not fix a singular point of X. Then, up to isomor-
phism, X is given by (3.2) and one of the following holds:

(1) a1 2 k, a2 = a3 = a4 = 1, Aut(X) = S3 is generated by

�1 : (x) 7! (x2, x1, x3, x5, x4),

�2 : (x) 7! (⇣3x1, ⇣
2
3x2, x4, x5, x3).

(2) a1 = 1, a2 = a3 = a4 = 0, Aut(X) = S4 is generated by �1, �2

and
◆1 = diag(1, 1, 1,�1,�1).

(3) a1 = a2 = a3 = a4 = 0, Aut(X) = Gm ⇥ S4 is generated by
�1, �2, ◆1 and

⌧a = diag(1, 1, a, a, a), a 2 k
⇥
.

Proof. By assumption, the induced G-action on l is the S3-action gen-
erated by (3.5). This action comes from Aut(X) only when

a2 = a3 = a4.

There is an exact sequence

0 ! H ! G ! S3 ! 0,
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where H is the generic stabilizer of l, consisting of elements of the
form 0

BBBB@

1 0 0 0 0
0 1 0 0 0
b1 c1 d1 e1 f1

b2 c2 d2 e2 f2

b3 c3 d3 e3 f3

1

CCCCA
.

The condition that such elements leave invariant (3.2) gives a system of
equations. Solving for the parameters bi, ci, di, ei, fi leads to the three
cases in the assertion. ⇤

We turn to the case when S is singular.

Proposition 3.3. Let X be a cubic threefold singular along a line
and such that the associated degree-5 del Pezzo surface S is singular.
Assume that Aut(X) does not fix a singular point on X. Then, up to
isomorphism, one of the following holds:

(4) X = {x1x
2
3+x2x

2
4+x

3
5 = 0}, and Aut(X) = G2

moC2, generated
by

diag(t�2
1 , 1, t1, 1, 1), diag(1, t�2

2 , 1, t2, 1),

(x) 7! (x2, x1, x4, x3, x5), t1, t2 2 k
⇥
.

(5) X := {x1x
2
3+x2x

2
4+x3x4x5+x

3
5 = 0}, and Aut(X) = GmoC2,

generated by

diag(t�2
, t

2
, t, t

�1
, 1), (x) 7! (x2, x1, x4, x3, x5), t 2 k

⇥
.

Proof. We start by observing that q1 and q2 from (3.1) are linearly
independent, since S is not a cone. Now, we suppose that G does not
fix points in l. In particular, G does not fix points in S.

If S has Du Val singularities, all possibilities for S are described in
[11, Proposition 8.5]. In particular, since Aut(X) does not fix points
in S, we see that S does not have a distinguished singular point, which
leaves only one possibility for the singular locus of S – it consists of two
singular point of type A1. But in this case, the conic bundle S ! l has
exactly two singular fibers, one of them is not reduced, and the other
is reduced and contained in the smooth locus of S, so they cannot be
swapped by the action of G, which implies that G fixes two points in l.

Hence, the singularities of S are not Du Val. Thus, up to a change
of coordinates, we may assume that q1 and q2 do not depend on x5.
Then, up to a change of variables, we may assume that

q1 = x
2
3, q2 = x

2
4.
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Now, the equation (3.1) takes the form

x1x
2
3 + x2x

2
4 + c(x3, x4, x5) = 0.

After a linear change of x1, x2, we may assume that c does not contain
monomials divisible by x

2
3 and x

2
4, so that

c(x3, x4, x5) = c1x
3
5 + x

2
5(c2x3 + c3x4) + c4x3x4x5.

• If c1 6= 0, we can change x1, x2 and x5 to get

c(x3, x4, x5) = x
3
5 + c4x3x4x5.

Now, if c4 = 0, we get case (4). Otherwise we can scale coor-
dinates so that c4 = 1, and obtain case (5).

• If c1 = 0 and c2 6= 0 or c3 6= 0, then we can change x1, x2 and
x5 to get

c(x3, x4, x5) = x
2
5(c2x3 + c3x4),

where at least one of c2 or c3 is not zero, since X is not a cone.
Then X has a distinguished singularity in l, so this point must
be fixed by Aut(X). Hence, this case is impossible.

• If c1 = 0 and c2 and c3 = 0, then c(x3, x4, x5) = c4x3x4x5,
which means that X is singular along a plane. Hence, this case
is impossible.

Now we determine the automorphism groups of the two possible
cases. In both cases, the group Aut(X) contains the infinite dihedral
group Gm o C2, and Gm acts on l with the fixed points

[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0],

which are swapped by the action of C2. Observe that X has A2 ⇥ A1

singularity at every point of l di↵erent from [1 : 0 : 0 : 0 : 0] and
[0 : 1 : 0 : 0 : 0], but X has worse singularities at these two points,
which implies that they form one Aut(X)-orbit. It follows that there
exists an exact sequence

0 ! H ! Aut(X) ! Gm o C2 ! 0,

where H is the generic stabilizer of l. Similarly as in Proposition 3.2,
a direct computation of H completes the proof. ⇤

Consider the rational map � : X 99K P1
x1,x2

⇥ P2
x3,x4,x5

given by

x 7!
�
(x1, x2), (x3, x4, x5)

�
,
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for X in Propositions 3.2 and 3.3. The description of automorphisms
implies that � is Aut(X)-equivariant. Following the labelling in Propo-
sitions 3.2 and 3.3, � is a birational map in all five cases except case
(3). We discuss linearizations:

(1) Aut(X) = S3, acting on P1
⇥ P2 diagonally via the usual ac-

tion on P1 and the permutation action on P2. The action is
linearizable, by Proposition 2.1.

(2) Aut(X) = S4, acting on P1
⇥ P2 via the S3-action on P1 and

the standard faithful linear action on P2; this is linearizable, by
Proposition 2.1.

(3) In this case, � is not birational. Instead, the Aut(X)-equivariant
birational map ⇢ : X 99K P3 given by

(x) 7! (x2x3, x2x4, x2x5, x
2
3 + ⇣3x

2
4 + ⇣

2
3x

2
5)

yields linearizability. In detail, ⇢ factors through the birational
maps ⇡ and ':

X
'
// X2,2

⇡ // P3
,

where ' : X 99K X2,2 ⇢ P5 is the unprojection from the plane
{x4 = x5 = 0}, given by

(x) 7! (x1x2, x
2
2, x3x2, x4x2, x5x2, x

2
3 + ⇣3x

2
4 + ⇣

2
3x

2
5),

and X2,2 ⇢ P5
y1,...,y6 is the intersection of two quadrics given by

y
2
3 + ⇣3y

2
4 + ⇣

2
3y

2
5 + y2y6 = y

2
3 + ⇣

2
3y

2
4 + ⇣3y

2
5 + y1y6 = 0.

The singular locus of X2,2 is the image of l, also a line. The
birational map ⇡ : X2,2 99K P3 is the projection from this dis-
tinguished line, which fits the following commutative diagram:

X̂2,2

}}   
X2,2

⇡ // P3

where X̂2,2 ! P3 is a blowup of 4 general coplanar points,
and X̂2,2 ! X2,2 is a birational map that contracts the strict
transform of the plane spanned by these four points.

(4) The Aut(X) = G2
m o C2-action on P2 is generically free; any

action of a finite subgroup is linearizable, by Proposition 2.1.
(5) Same as in Case (4), any action of a finite subgroup is lineariz-

able.
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4. Conic

We recall from [19] that the normal form of cubic threefolds X sin-
gular along a conic C is

x1q1(x4, x5) + x2q2(x4, x5) + x3q3(x4, x5)+

+ q4(x1, x2, x3)l(x4, x5) + c(x4, x5) = 0,

where l is a linear form, q1, q2, q3, q4 are quadratic forms and c is a cubic
form. Let ⇧ = {x4 = x5 = 0}. Then ⇧ and C are Aut(X)-invariant
and

C = {x4 = x5 = q4 = 0} ⇢ ⇧ ⇢ X.

We may assume that C is smooth, otherwise the action either reduces
to the case of a line, or is linearizable, via projection from the distin-
guished singularity. Similarly, we may assume that Aut(X) does not
fix points in C.

Changing coordinates on P4, we may assume that q4 = x1x2+x
2
3 and

l = x5. Then

{x5 = 0} \X = 2⇧+ ⇧0
,

for some plane ⇧0
⇢ X. Note that 2⇧ + ⇧0 is the only surface in

the pencil of hyperplane sections containing ⇧ that splits as a union
of three planes. Hence, the plane ⇧0 is also Aut(X)-invariant. Apriori,
we have two possibilities: ⇧ 6= ⇧0 (general case) and ⇧ = ⇧0 (special
case).

In the general case, the line ⇧\⇧0 intersects C in two distinct points.
After another coordinate change, ⇧0 = {x3 = x5 = 0} and X is given
by

x1(a1x4x5 + a2x
2
5) + x2(b1x4x5 + b2x

2
5) + x3(x

2
4 + c1x4x5 + c2x

2
5)+

+ (x1x2 + x
2
3)x5 + e1x

2
4x5 + e2x4x

2
5 + e3x

3
5 = 0,

for some a1, a2, b1, b2, c1, c2, e1, e2, e3 2 k. Now, changing coordinates
x1 7! x1 + ↵x3 + �x4 and x2 7! x2 + �x3 + �x4, for some ↵, �, �, � 2 k,
we may further assume that a1 = a2 = b1 = b2 = 0, and the defining
equation of X simplifies to

x3(x
2
4 + c1x4x5 + c2x

2
5) + (x1x2 + x

2
3)x5 + e1x

2
4x5 + e2x4x

2
5 + e3x

3
5 = 0.

Finally, changing coordinates x3 7! x3 + ✏x5 and x4 7! x4 + "x5, for
some ✏, " 2 k, we may assume that c1 = c2 = 0, so that X is given by

(4.1) x3x
2
4 + (x1x2 + x

2
3)x5 + e1x

2
4x5 + e2x4x

2
5 + e3x

3
5 = 0.
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We may assume that (e1, e2, e3) 6= (0, 0, 0) in (4.1), since otherwise X

would have additional singular point [0 : 0 : 0 : 0 : 1], which would be
fixed by Aut(X). Moreover, scaling coordinates x1, x2, x3, x4, x5 as

x1 7!
x1

s2
, x2 7!

x2

s2
, x3 7!

x3

s2
, x4 7! sx4, x5 7! s

4
x5,

we scale (e1, e2, e3) as (s6e1, s9e2, s12e3), so we really have

[e1 : e2 : e3] 2 P(6, 9, 12) ' P(1, 3, 2).
Now, we turn to the special case when ⇧ = ⇧0. Arguing as in the

general case, we can change coordinates on P4 such that X is given by

(4.2) x5(x1x2 + x
2
3) + x

3
4 + e1x4x

2
5 + e2x

3
5 = 0,

for some [e1 : e2] 2 P(4, 6). In this case, X has an A2-singularity at a
general point of the conic C.

In both cases, consider the unprojection of the cubic X from the
plane ⇧, similar to the approach in [6, 5], for cubics with isolated
singularities. Namely, if X is given by (4.1), we can introduce a new
coordinate

y6 =
x3x4 + e1x4x5 + e2x

2
5

x5
=

x1x2 + x
2
3 + e3x

2
5

�x4
,

which gives an Aut(X)-equivariant birational map X 99K X2,2, where
X2,2 is a complete intersection of two quadrics in P5

y1,...,y6 given by

y3y4 + e1y4y5 + e2y
2
5 � y5y6 = y1y2 + y

2
3 + e3y

2
5 + y4y6 = 0.

In this case, X2,2 has two isolated ordinary double points

[1 : 0 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0 : 0],

for general [e1 : e2 : e3] 2 P(6, 9, 12). If X is given by (4.2), then we
let

y6 =
x
2
4 + e1x

2
5

x5
=

x1x2 + x
2
3 + e3x

2
5

�x4
,

and obtain an Aut(X)-equivariant birational map X 99K X2,2, where
X2,2 is given by

y
2
4 + e1y

2
5 � y5y6 = y1y2 + y

2
3 + e2y

2
5 + y4y6 = 0.

In this case, the singular locus

Sing(X2,2) = {y1y2 + y
2
3 = y4 = y5 = y6 = 0}

is also a smooth conic, for general [e1 : e2] 2 P(4, 6). Let
� : P̃ ! P4
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be the blowup of ⇧. We have the commutative diagram

P̃
�

��

$

!!

P4 // P1
x4,x5

where $ is a P3-bundle and the dashed arrow is the projection from
the plane ⇧. The restriction of $ to X̃, the strict transform of X, is a
quadric surface bundle.

Proposition 4.1. Let X be a cubic given by (4.1)

x3x
2
4 + (x1x2 + x

2
3)x5 + e1x

2
4x5 + e2x4x

2
5 + e3x

3
5 = 0,

with parameters e1, e2, e3 2 k, such that Aut(X) does not fix any
singular points of X. Then one of the following holds:

(1) e1, e2, e3 are general, and Aut(X) = Gm o C2, generated by

⌧a : diag(a, a
�1
, 1, 1, 1), a 2 k

⇥
, �(12) : (x) 7! (x2, x1, x3, x4, x5).

(2) e1, e3 6= 0, e2 = 0, and Aut(X) = C2⇥ (GmoC2), generated by
⌧a, �(12) and

⌘1 : diag(1, 1, 1,�1, 1).

(3) e1 = e3 = 0, e2 6= 0, and Aut(X) = C3 ⇥ (Gm o C2), generated
by ⌧a, �(12) and

⌘2 : diag(1, 1, 1, ⇣3, ⇣
2
3 ).

(4) e1 = e2 = 0, e3 6= 0, and Aut(X) = C4 ⇥ (Gm o C2), generated
by ⌧a, �(12) and

⌘3 : diag(1, 1, 1, ⇣4,�1).

Proof. Note for general e1, e2, e3, X has A1⇥A1-singularity at any point
on the conic C di↵erent from the two points

[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0] 2 C,

so the image of G in Aut(C) = PGL2 is contained in the infinite
dihedral group Gm oC2. From the form of the equation, one sees that
⌧a, � 2 Aut(X) for all a 2 k

⇥ and e1, e2, e3 2 k, and thus generate the
full group Gm o C2. It follows that there is an exact sequence

0 ! H ! Aut(X) ! Gm o C2 ! 0,

where H is the generic stabilizer of C. Then a computation of H based
on the equation completes the proof. ⇤
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Proposition 4.2. Let X be a cubic given by (4.2)

x5(x1x2 + x
2
3) + x

3
4 + e1x4x

2
5 + e2x

3
5 = 0,

with parameters e1, e2 2 k such that Aut(X) does not fix any singular
points of X. Then one of the following holds:

(5) e1, e2 6= 0, and Aut(X) = C2 ⇥ PGL2, where

✓
a b

c d

◆
2 PGL2

acts via
0

BBBB@

a
2

b
2

⇣4ab

c
2

d
2

⇣4cd
2ac
⇣4

2bd
⇣4

ad+ bc

ad� bc

ad� bc

1

CCCCA
;

and C2 acts via

⌘1 : diag(1, 1, 1,�1,�1).

(6) e1 6= 0, e2 = 0, and Aut(X) = C4 ⇥ PGL2, generated by the
PGL2-action described in case (5) and

⌘2 : diag(1, 1, 1, ⇣4,�⇣4).

(7) e1 = 0, e2 6= 0, and Aut(X) = C6 ⇥ PGL2, generated by the
PGL2-action described in case (5) and

⌘3 : diag(1, 1, 1,�⇣3,�1)

Proof. In this case, we observe that PGL2 ⇢ Aut(X) with the gener-
ators given above. As before, one can directly compute the generic
stabilizer H of C to obtain the three cases in the assertions. Note that
H always commutes with PGL2. ⇤

We turn to the problem of linearization.

Theorem 4.3. Let X be the cubic given by (4.1) or (4.2) and G = Dn

the dihedral group generated by ⌧a and �(12) with a = ⇣n, for some
even n. Then the G-action on X is not linearizable. In particular, the
Aut(X)-action on X is not linearizable.

Proof. The group G contains the Klein four-group h⌧�1, �(12)i where
�12 fixes a cubic surface and the residual C2 acting on S fixes a smooth
elliptic curve. The assertion then follows from [6, Proposition 2.6]. ⇤
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Remark 4.4. Forms over non-closed fields of cubics given by (4.2)
have been considered in [9, Section 11.3]. In the birational models
as intersections of two quadrics in P5, the singular locus is a conic
without rational points. The rationality of such threefolds remains an
open problem.

On the other hand, in the equivariant context, for the action of
G = C

2
2 , the corresponding conic has no G-fixed points; and the G-

action is not linearizable, by Theorem 4.3.

Theorem 4.5. Let X be a cubic given by (4.1) or (4.2). Then X is
G-unirational for all finite G ✓ Aut(X).

Proof. The plane ⇧ ⇢ X (spanned by the conic C) is necessarily G-
invariant. The assertion then follows from Proposition 2.3. ⇤

5. The chordal cubic

There is a unique cubic threefold X ⇢ P4 such that Sing(X) is a
rational normal quartic curve. It is known as the chordal cubic, and is
given by

X = {x1x
2
4 + x

2
2x5 � x1x3x5 � 2x2x3x4 + x

3
3 = 0} ⇢ P4

x1,...,x5
.(5.1)

This X is the secant variety of its singular locus C := Sing(X). We
have

Aut(X) = PGL2,

where PGL2 acts on P4 via the usual embedding C = P1
,! P4. The

linear system |OX(2)�C| gives rise to a PGL2-equivariant rational map
⇢ : X 99K S, where S = P2 is the Veronese surface in P5. This map fits
into the following PGL2-equivariant commutative diagram:

X̃

�

��

$

��
X

⇢
// S

where � is the blowup of C in X and $ is a P1-bundle.
Let G ⇢ Aut(X) be a finite subgroup. Then G is one of the following

Cn, Dn, A4, S4, and A5.

For all such G, the induced action on S is generically free, and lineariz-
able. Moreover, the G-action on X satisfies Condition (A), indeed, the
Klein four-group C

2
2 ⇢ PGL2, acting via

diag(1,�1, 1,�1, 1) and (x) 7! (x5, x4, x3, x2, x1),
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fixes the smooth point [1 : 0 : 1 : 0 : 1] 2 X, and all other abelian
groups are cyclic. Applying Proposition 2.1, we obtain linearizability
of the G-action on X. To summarize, we obtain

Theorem 5.1. Let X be the chordal cubic threefold given by (5.1), and
G ⇢ Aut(X) = PGL2 a finite subgroup. Then the G-action on X is
linearizable.

Remark 5.2. We note that although all finite subgroups of Aut(X) in
this case are linearizable, the Aut(X)-action on X is not linearizable.
Indeed, from [14, Section 2], we see that the P1-bundle $ : X̃ ! P2 is
the Schwarzenberger bundle S3, in the notation of [2, Definition 1.2.7].
Precisely, it is the projectivization of the pullback of OP1⇥P1(0, 4) under
the double cover P1

⇥ P1
! P2 ramified along a conic. The connected

component of the identity Aut�(X̃) = PGL2. By [3, Theorem F], there
is no Aut�(X̃)-equivariant birational map to P3.

6. Plane

By [19, Proposition 4.2], a cubic threefold X singular along the plane

⇧ = {x4 = x5 = 0} ⇢ P4

is given by

x1q1(x4, x5) + x2q2(x4, x5) + x3q3(x4, x5) + c(x4, x5) = 0,

where q1, q2, q3 are quadratic forms and c is a cubic form in x4, x5.
Viewing the first three terms as a quadratic form in x4, x5, over
k(x1, x2, x3), we find that its discriminant defines a conic C ⇢ ⇧ =
P2
x1,x2,x3

. If C is non-reduced or singular then there is a distinguished
point on ⇧ fixed by any group action, implying the linearizability.
Thus, we may assume that C is smooth.

Proposition 6.1. Let X be a cubic threefold singular along a plane.
Assume that Aut(X) does not fix any singular points of X. Then, up
to isomorphism, X is given by

x1x
2
4 + x2x4x5 + x3x

2
5 = 0,(6.1)

and Aut(X) is generated by elements

(x) 7! (x) ·

0

BBBB@

d
2

�2bd b
2

�cd (ad+ bc) �ab

c
2

�2ac a
2

a c

b d

1

CCCCA
, ad� bc 6= 0,(6.2)
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and

(x) 7! (x) ·

0

BBBB@

1 0 0
0 1 0
0 0 1
0 �↵ �� � 0
↵ � 0 0 �

1

CCCCA
, ↵, � 2 k, � 2 k

⇥
.(6.3)

Proof. Recall that Aut(X) preserves the conic C ⇢ ⇧. Up to isomor-
phism, we may assume that

C = {4x1x3 � x
2
2 = x4 = x5 = 0}.

Since X does not contain a distinguished singular point on ⇧, we may
change variables to obtain the unique equation (6.1) for X.

Since Aut(X) preserves C, its e↵ective action on ⇧ is a subgroup of
PGL2. We note that Aut(X) contains a subgroup isomorphic to

GL2 =

⇢✓
a c

b d

◆
, ad� bc 6= 0

�
,

generated by elements of the form (6.2), which acts via PGL2 on ⇧. It
follows that there is an exact sequence

1 ! H ! Aut(X) ! PGL2 ! 1,

where H is the generic stabilizer of ⇧. A direct computation shows
that H is generated by elements of the form (6.3).

⇤

Proposition 6.1 implies that Aut(X) is isomorphic to the subgroup
in GL3 consisting of 3⇥ 3 matrices

0

@
a c 0
b d 0
↵ � 1

1

A .

This can also be explained as follows. Let f : X̃ ! X be the blowup
of ⇧, and let E be the preimage of ⇧ in X̃. Then

(6.4) X̃ = P1
y1,y2 ⇥ P2

z1,z2,z3 .

We may assume that E is given by z3 = 0, so that we can identify
E = P1

y1,y2 ⇥ P1
z1,z2 . Then

Aut(X) = Aut(X̃, E),
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where the latter group consists of automorphisms

(y1, y2)⇥ (z1, z2, z3) 7!

(ay1 + by2, cy1 + dy2)⇥ (az1 + bz2 + ↵z3, cz1 + dz2 + �z3, z3).

The birational morphism f is equivariant with respect to the described
actions of Aut(X̃, E), and can be explicitly presented as follows. Con-
sider the Segre embedding P1

y1,y2 ⇥ P2
z1,z2,z3 ,! P5 given by

(y1, y2)⇥ (z1, z2, z3) 7! (y1z1, y1z2, y1z3, y2z1, y2z2, y2z3).

Composing it with the linear projection P5
t1,t2,t3,t4,t5,t6 99K P4 given by

(t) 7! (t1,�t2 � t4, t5, t6, t3),(6.5)

we obtain the map f ; the resulting image of P1
⇥ P2 in P4 is the cubic

X given by (6.1). The map (6.5) is a projection from the point

[0 : 1 : 0 : �1 : 0 : 0] 2 P5
.

This point is not in the image of P1
⇥P2, but it is fixed by the image of

Aut(X̃, E) in PGL6. Note that f induces a double cover E ! ⇧ which
is ramified in C, which explains why this conic is Aut(X)-invariant.

Theorem 6.2. Let X be the cubic threefold given by (6.1) and G ⇢

Aut(X) a finite group. Then the G-action on X is linearizable.

Proof. We see that the Aut(X)-equivariant birational model X̃ of X is
isomorphic to P1

⇥P2, with coordinates as in (6.4). Any finite subgroup
G ⇢ Aut(X) acts linearly and generically freely on P2

z1,z2,x3
, and lifts

to the vector bundle

A2
y1,y2 ⇥ P2

z1,z2,x3
! P2

z1,z2,x3
.

By Proposition 2.1, the G-action is linearizable. ⇤
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