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Abstract. We classify G-Mori fibre spaces equivariantly bira-
tional to smooth quadric threefolds with fixed-point free actions
of the alternating group G = A5. We deduce that such quadric
threefolds are G-solid and the G-actions on them are not projec-
tively linearizable.

1. Introduction

One of the central problems in birational geometry is to understand
the finite subgroups of the Cremona group Crn(C), the group of bira-
tional automorphisms of Pn over C. A classification of finite subgroups
of Cr2(C) was obtained in [25], but it is far from complete in dimen-
sion 3 or higher. A closely related problem is to identify projectively
linearizable subgroups of Crn(C), that is, subgroups conjugate to a
subgroup induced by a biregular action on Pn. This has been recently
settled in dimension 2 by [36], and is attracting considerable attention
in dimension 3, see, e.g. [19, 18, 11, 10, 21]. A particularly interesting
class of groups is finite simple non-abelian subgroups of Cr3(C). They
have been classified in [38]. The possibilities are:

A5, A6, A7, PSL2(F7), SL2(F8), PSp4(F3).

Among them, the most fundamental one in group theory is the al-
ternating group A5, the smallest non-abelian simple group. It plays a
significant role in birational geometry. There are only three embeddings
of A5 in Cr2(C), up to conjugation. For their descriptions, see [8], [25]
or [6]. In contrast, Krylov [31] shows that there are infinitely many con-
jugacy classes of A5 in Cr3(C). Obtaining a classification of all such
conjugacy classes is thus a difficult task and remains open. Indeed,
there is a wealth of rational threefolds carrying an A5-symmetry: the
Segre cubic, the Igusa and Burkhardt quartic, the quintic del Pezzo
threefold, etc. It is a natural question to ask about conjugation of
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the corresponding A5-actions in Cr3(C). In the last two decades, this
has been extensively studied [12, 3], and a book [16] was written by
Cheltsov and Shramov on this topic. However, the A5-equivariant ge-
ometry for one of the simplest Fano threefolds, smooth quadric three-
folds, had not been addressed. In this paper, we fill this gap, answering
the questions of projective linearizability and solidity.

Throughout, we work over C and G is the alternating group A5 of
order 60, unless otherwise specified. We restrict ourselves to smooth
quadric threefolds X ⊂ P4 carrying generically free actions of G such
that XG ̸= ∅, since otherwise a projection from a G-fixed point on
X yields a G-equivariantly birational map X 99K P3. The arising G-
actions on P3 also have fixed points.

Over a non-algebraically closed field, a smooth quadric hypersurface
is rational if and only if it has a rational point. Surprisingly, projective
linearizability of group actions on quadrics is a more intricate prob-
lem, see, e.g., [27]. Many obstructions naturally vanish on quadrics,
including group cohomology [7, 30] and the dual complex of [26], see
[18, Section 2] for an overview of known obstructions. Non-linearizable
actions on quadric threefolds have been found using the Burnside for-
malism [41, Example 9.2] and birational rigidity [15, 14]. However, the
first is not applicable to our case.

From representation theory, we know that any fixed-point free G-
action on a smooth quadric threefold X is isomorphic to one of the
following two cases, which we refer to as the standard and nonstandard
actions:

(1) standard action:

X = X1 =
{
x21 + x22 + x23 + x24 + x25 = 0

}
⊂ P4

x1,...,x5

with the G-action generated by

(x) 7→ (x2, x1, x4, x3, x5), (x) 7→ (x5, x1, x2, x3, x4).(1.1)

(2) nonstandard action:

X = X2 =

{ ∑
1≤i≤j≤5

xixj = 0

}
⊂ P4

x1,...,x5
(1.2)

with the G-action generated by

(x) 7→ (x4, x1, x5, x2,−x1 − x2 − x3 − x4 − x5),

(x) 7→ (x4,−x1 − x2 − x3 − x4 − x5, x1, x3, x2).(1.3)
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Our goal is to find all G-Mori fibre spaces that are G-equivariantly
birational to X1 and X2 respectively, using classical techniques from
birational rigidity, based on the celebrated Noether–Fano inequalities.
The same has been carried out in [14] to show the non-linearizability
of the S5-action on X1 via the S5-permutations on coordinates. Our
work generalizes their arguments to other actions.

These quadrics are G-equivariantly birational to certain singular cu-
bic threefolds. By [18, Section 6], up to isomorphism, there exists a
unique cubic threefold Y1 with 5A1-singularities and invariant under
the G-action given by (1.1). By [11, Lemma 8.3], there is a unique cu-
bic threefold Y2 with 5A2-singularities and invariant under the G-action
given by (1.3). See Section 3 for explicit equations of Y1 and Y2.

Our main results are the following:

Theorem 1.1. The only G-Mori fibre spaces that are G-equivariantly
birational to the quadric threefold X1 are X1 and the cubic threefold Y1.

Theorem 1.2. The only G-Mori fibre spaces that are G-equivariantly
birational to the quadric threefold X2 are X2 and the cubic threefold Y2.

There is also a nonstandard G′ = S5-action on X2, generated by
(1.3) and the involution

(x) 7→ (x3, x4, x1, x2,−x1 − x2 − x3 − x4 − x5).

We prove:

Theorem 1.3. The only G′-Mori fibre spaces that are G′-equivariantly
birational to the quadric threefold X2 are X2 and the cubic threefold Y2.

A G-variety is called G-solid if it is not G-equivariantly birational
to a G-Mori fibre space over a positive dimensional base. Our results
together with [14, Theorem 3.1] imply that:

Corollary 1.4. Let G = A5 or S5, and X a smooth quadric threefold
carrying a generically free G-action. Then the following are equivalent

• G does not fix any point on X,
• the G-action on X is not projectively linearizable,
• X is G-solid.

Note that all such actions on quadric threefolds are known to be
stably linearizable by [20, Theorem 4.1].
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Here’s the roadmap of the paper: in Section 2, we recall basic tools
from birational geometry. In Section 3, we present facts about A5-
equivariant geometry of quadrics. In Sections 4 – 7, we prove tech-
nical results on singularities of certain log pairs on quadric and cubic
threefolds. In Section 8, we prove that these technical results imply
Theorem 1.1 and Theorem 1.2, and derive a proof of Theorem 1.3.

Acknowledgments: The authors are grateful to Ivan Cheltsov for
his careful guidance and detailed feedback on a first draft of the manu-
script, to Yuri Tschinkel for his interest and comments, and to Joseph
Malbon for helpful discussions. Part of the paper was completed dur-
ing the semester-long program Morlet Chair at CIRM, Luminy. The
authors are thankful for its hospitality.

2. Preliminaries

Let X be a projective variety with at most klt singularities and G a
finite subgroup of Aut(X). We use the language of the (equivariant)
minimal model program; see, e.g., [17, I.2]. Throughout the paper, a
log pair (X,MX) refers to a pair consisting of X with a non-empty
mobile G-invariant linear system MX on X consisting of Q-Cartier

divisors. Let π : X̃ → X be a resolution of singularities, and

MX̃ := π∗(KX +MX)−KX̃ .

For a prime divisor D ⊂ Supp(MX̃), the log discrepancy of the log pair
(X,MX) at D is defined as the rational number

a(X,MX ;D) = 1−multD(MX̃).

Let p ∈ X be a point. We say that (X,MX) is canonical (resp. log-

canonical, klt) at p if for any prime divisor E on X̃ such that p ∈ π(E),
we have a(X,MX ;E) ≥ 1 (resp. ≥ 0, > 0). The non-canonical (resp.
non-log-canonical, non-klt) locus of (X,MX) is the union of points
where (X,MX) is not canonical (resp. not log-canonical, not klt).

An irreducible subvariety Z ⊂ X is said to be a center of non-
canonical (resp. non-log-canonical, non-klt) singularities of (X,MX)

if there exists a resolution π : X̃ → X and a prime divisor E on X̃ such
that π(E) = Z and a(X,MX ;E) < 1 (resp. < 0, ≤ 0). For simplicity,
we also refer to it as a non-canonical (resp. non-log-canonical, non-klt)
center.
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The cornerstone of birational rigidity is the classical Noether–Fano
inequality, which reveals a close connection between canonical singular-
ities of log pairs and the existence of birational maps between Mori fibre
spaces. We recall it in the equivariant setting, as is in [16, Theorem
3.2.6].

Theorem 2.1. Let X be a Fano variety with terminal singularities, G
a finite subgroup of Aut(X) such that rk(ClG(X)) = 1. Assume that
there exists a G-equivariantly birational map χ : X 99K V , where V is
a variety with a generically free G-action such that one of the following
holds:

(1) either V is also a Fano variety with terminal singularities such
that rk(ClG(V )) = 1;

(2) or there exists a G-equivariant morphism V → Z with connected
fibres such that its general fibre is a Fano variety, and Z is a
normal projective variety with dim(V ) > dim(Z) > 0.

In the former case, let MX be the strict transform on X of the linear
system | − nKV | for n ≫ 0. In the latter case, let MX be the strict
transform on X of the linear system |HV |, where HV is the pullback on
V of a very ample divisor on Z whose class in Pic(Z) is G-invariant.
Let λ ∈ Q be such that λMX ∼Q −KX . Then, if χ is not biregular,
the log pair (X,λMX) has non-canonical singularities.

The α-invariant is a number associated to X which corresponds to
the global log-canonical threshold introduced in [40] in a different lan-
guage. When X is a Fano variety with dim(X) ≥ 2, the G-equivariant
α-invariant of X is the number

αG(X) = sup

{
λ ∈ Q

∣∣∣∣ the pair (X,λD) is log-canonical for any

G-invariant effective Q-divisor D ∼Q −KX

}
.

We compute this invariant for some G-surfaces in Sections 4 and 5. We
will use a few results about singularities.

Theorem 2.2 ([39, Theorem 2.1]). Let X be a threefold and MX a
non-empty mobile linear system on X. If a smooth point p ∈ X is a
non-canonical center of the pair (X,λMX) for some positive rational
number λ, and D1, D2 are two general elements in MX , then

multp(D1 ·D2) >
4

λ2
.

Theorem 2.2 is essentially a corollary of the following theorem due
to Corti and the inversion of adjunction; see also [17, Section 2.5].
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Theorem 2.3 ([22, Theorem 3.1]). Let S be a surface and MS a
non-empty mobile linear system on S. If a smooth point p ∈ S is a
non-log-canonical center of the pair (S, λMS) for some positive rational
number λ, and D1, D2 are two general elements in MS, then

multp(D1 ·D2) >
4

λ2
.

In many situations, Theorem 2.2 gives us a desired bound. However,
in certain situations (e.g., in Propositions 6.22 and 7.12), a sharper
result is needed:

Theorem 2.4 ([24]). Let S be a smooth surface, p ∈ S a point, and
MS a non-empty mobile linear system on S. Assume that p is a non-
log-canonical center of the log pair (S, λMS) with some positive ratio-
nal number λ. Let m = multp(MS). Then for two general elements
D1, D2 ∈ MS, we have

multp(D1 ·D2) >
m2

λ2(m− 1)
.

We will also use the following technical observation.

Remark 2.5 ([14, Remark 3.6]). Let X be a threefold with terminal
singularities, p ∈ X a smooth point, MX a mobile linear system, and
λ ∈ Q>0. If p is a non-canonical center of the log pair (X,MX), then
p is a non-log-canonical center of the log pair (X, 3

2
MX).

The Nadel vanishing theorem will give us bounds of the size of 0-
dimensional non-canonical centers.

Theorem 2.6 ([32, Theorem 9.4.8]). Let X be a projective variety with
at most klt singularities, D an effective Q-divisor on X, L a Cartier
divisor such that KX + D + A ∼Q L for some ample divisor A, and
I(X,D) the multiplier ideal sheaf of D. Then

H i(X,OX(L)⊗ I(X,D)) = 0 for i ≥ 1.

Lastly, we introduce some terminology. For a G-invariant subvariety
Z ⊂ X, we say that Z is G-irreducible if G acts transitively on the
irreducible components of Z. Let H be a general hyperplane section
on X. We denote by |nH − Z| the linear system consisting of degree
n hyperplane sections on X passing through Z. Often, we refer to this
as the linear system |nH − Z|, although Z is not necessarily a divisor.
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3. A5-actions on quadric threefolds

Let X be a smooth quadric threefold carrying a generically free regu-
lar action of G = A5. Assume that there exists a G-orbit Σ of 5 points
in general position in X. Up to a change of variables, we may also
assume that the five points are five coordinate points of P4. Consider
the standard Cremona transformation on P4

χ : (x1, x2, x3, x4, x5) 7→ (
1

x1
,
1

x2
,
1

x3
,
1

x4
,
1

x5
).

The restriction of χ to X is a G-equivariantly birational map. The
image χ(X) is a singular cubic threefold. We say that χ is the Cre-
mona map associated with Σ. More descriptions of χ can be found in
[4, 5, 14].

Assume that XG ̸= ∅. From representation theory, there are two
possibilities for the G-action on the ambient P4:

• the standard action: P4 = P(1 ⊕ V4), where V4 is the unique
irreducible 4-dimensional representation of G,

• the nonstandard action: P4 = P(V5), where V5 is the unique
irreducible 5-dimensional representation of G.

3.1. The standard action. Under the standard G-action on P4, up
to change of variables, we may assume that X is given by{

x21 + x22 + x23 + x24 + x25 = 0
}
⊂ P4

x1,...,x5

and the G-action is given by A5-permutations of 5 coordinates. There
are two G-orbits of length 5, denoted by Σ5 and Σ′

5. Let

Y1 = χ1(X), Y2 = χ′
1(X)

where χ1 and χ
′
1 are the Cremona maps associated with Σ5 and Σ′

5. One
can check by direct computation that Y1 and Y ′

1 are cubic threefolds
with 5A1-singularities. By [18, Section 6], such cubics with A5-actions
are unique up to isomorphism. In particular, we may assume that
Y1 = Y ′

1 = Y where Y ⊂ P4 is given by

{x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5+

+ x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5 = 0} ⊂ P4
x1,...,x5

and the G-action is still given by permutations of coordinates.
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3.2. The nonstandard action of A5. Up to isomorphism, we may
assume that the G-action is as in (1.3). There is a unique G-invariant
quadric X ⊂ P4, and it is given by the equation (1.2). There are also
two G-orbits of length 5 in X. Let χ2 and χ′

2 be the birational maps
associated with them respectively, and

Y2 = χ2(X), Y ′
2 = χ′

2(X).

One can check that Y2 and Y
′
2 are cubic threefolds with 5A2-singularities.

Such cubic threefolds with A5-actions are unique up to isomorphism by
[11, Lemma 8.3]. Thus, we may assume that Y = Y2 = Y ′

2 where Y is
given by

Y = {(8− 3ζ6)f1 + 7f2 = 0} ⊂ P4,

for

f1 = x21x2 + x1x
2
2 + 2x1x2x3 + x22x3 + x2x

2
3 + 2x2x3x4 + x23x4 + x3x

2
4+

+ x21x5 + 2x1x2x5 + 2x1x4x5 + 2x3x4x5 + x24x5 + x1x
2
5 + x4x

2
5,

f2 = x21x3 + x1x
2
3 + x21x4 + 2x1x2x4 + x22x4 + 2x1x3x4 + x1x

2
4 + x2x

2
4+

+ x22x5 + 2x1x3x5 + 2x2x3x5 + x23x5 + 2x2x4x5 + x2x
2
5 + x3x

2
5,

with the same G-action given by (1.3).

4. The standard A5-action on the quadric threefold

Throughout this section, X is the quadric given by{
x21 + x22 + x23 + x24 + x25 = 0

}
⊂ P4

x1,...,x5
.

Consider the G-action on X given by natural A5-permutations of the
coordinates. We denote by Σ5 and Σ′

5 two G-orbits of length five on
X. The aim of this section is to prove the following proposition.

Proposition 4.1. Let MX be a non-empty mobile G-invariant linear
system on X, and λ ∈ Q such that λMX ∼Q −KX . Then the log pair
(X,λMX) is canonical away from Σ5 ∪ Σ′

5.

Proof. This follows from Propositions 4.10 and 4.13, and Corollary
4.15.

□

First, as a guiding principle, we observe that curves of degrees greater
than 17 cannot be non-canonical centers of (X,λMX).
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Remark 4.2. If a curve C is a center of non-canonical singularities of
(X,λMX), then for two general membersM1,M2 ∈ MX , we have that

λ2(M1 ·M2) = mC +∆

for some m > 1 and some effective divisor ∆ not supported along C.
Intersecting with a general hyperplane H on X, we obtain that

18 = λ2(M1 ·M2 ·H) > deg(C).(4.1)

Later, we will see that the size of 0-dimensional non-canonical centers
is less than 20, using Nadel vanishing theorem.

We proceed with subsections. In the first subsection, we classify
orbits of length less than 20 and G-irreducible curves of degrees at most
17. In the second subsection, we prove that a G-invariant curve not
contained in Q cannot be a non-canonical center of (X,λMX), where
Q is the unique G-invariant hyperplane section on X (cf. Proposition
4.10). In the third subsection, we show that points away from Q and
Σ5 ∪Σ′

5 cannot be non-canonical centers (cf. Proposition 4.13). In the
fourth subsection, using the G-equivariant α-invariant, we prove that
no point or curve in Q is a non-canonical center (cf. Corollary 4.15).

4.1. Small G-orbits and G-invariant curves of low degrees.

Lemma 4.3. A G-orbit of points in X with length < 20 is one of the
following:

Σ5 = the orbit of [1 : 1 : 1 : 2ζ4 : 1],

Σ′
5 = the orbit of [1 : 1 : 1 : −2ζ4 : 1],

Σ10 = the orbit of [1 : 1 :
ζ4
√
6

2
:
ζ4
√
6

2
: 1],

Σ′
10 = the orbit of [1 : 1 : −ζ4

√
6

2
: −ζ4

√
6

2
: 1],

Σ12 = the orbit of [1 : ζ5 : ζ
2
5 : ζ35 : ζ45 ],

Σ′
12 = the orbit of [1 : ζ25 : ζ45 : ζ5 : ζ

3
5 ],

where the length of each orbit is indicated by the subscript.

Proof. This comes from a computation of fixed points by each subgroup
of G. □

Lemma 4.4. Every G-invariant curve C in X with deg(C) ≤ 17 has
a trivial generic stabilizer, that is, the G-orbit of a general point in C
has length 60.
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Proof. By computation, we find that all irreducible curves in X with a
non-trivial generic stabilizer are conics whose G-orbits have length 10
or 15, and thus their degrees exceed 17. □

There is a distinguished G-invariant hyperplane section of X given
by

Q = {x1 + x2 + x3 + x4 + x5 = 0} ∩X.
Note that Q = P1 × P1 and that G acts on Q via two non-isomorphic
G-actions on each copy of P1. Moreover, we have

Σ5,Σ
′
5,Σ10,Σ

′
10 ̸∈ Q, Σ12,Σ

′
12 ∈ Q.

Let B6 be the G-invariant smooth curve of degree 6 given by

(4.2)


x1 + x2 + x3 + x4 + x5 = 0,

x21 + x22 + x23 + x24 + x25 = 0,

x31 + x32 + x33 + x34 + x35 = 0.

It is known as the Bring curve [17, Remark 5.4.2] and has genus 4.

Lemma 4.5. Let C be a G-invariant reducible curve in X such that
10 < deg(C) ≤ 17. Then C is the union of curves in one of the
following G-orbits:

• one of the following 2 orbits of 6 conics

C6 = orbit of C1, C ′
6 = orbit of C2,

where

C1 = {x1 − x3 + (−ζ620 + ζ420 + 1)x4 + (ζ620 − ζ420 − 1)x5 =

= x2 + (ζ620 − ζ420 − 1)x3 + (−ζ620 + ζ420 + 1)x4 − x5 = 0} ∩X,

C2 = {x1 − x3 + (ζ620 − ζ420)x4 + (−ζ620 + ζ420)x5 =

= x2 + (−ζ620 + ζ420)x3 + (ζ620 − ζ420)x4 − x5 = 0} ∩X.

• one of the following 2 orbits of 12 lines

L12 = the orbit of the line {x1 + ζ5x4 + (ζ35 + ζ5 + 1)x5 = x2+

+ (ζ35 + 1)x4 + (ζ25 + 1)x5 = x3 − (ζ35 + ζ5)x4 + ζ45x5 = 0},

L′
12 = the orbit of the line {x1 + ζ25x4 + (ζ25 + ζ5 + 1)x5 = x2+

+ (ζ5 + 1)x4 − (ζ35 + ζ25 + ζ5)x5 = x3 − (ζ25 + ζ5)x4 + ζ35x5 = 0}.
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Each of the orbits above consists of pairwise disjoint components. The
orbits L12 and L′

12 are contained in Q. The orbits C6 and C ′
6 are not.

Proof. From indices of strict subgroups of G, we find that deg(C) = 12
or 15. If deg(C) = 15, then C is a union of 5 twisted cubics. Each of
the twisted cubic receives a generically free A4-action and spans a P3.
The A4-action on P3 should have two invariant lines. We check that
this does not happen for the given A4-action in our case. So this case
is impossible.

If deg(C) = 12, then C is either a union of 6 conics or 12 lines. If
C contains a conic, the plane spanned by the conic is left invariant by
a subgroup D5 ⊂ G. We check that the unique (up to conjugation)
D5 in G leaves invariant two planes in P4, giving rise to C6 and C ′

6.
If C consists of 12 lines, each line is left invariant by some subgroup
C5 ⊂ G, and thus contains two C5-fixed points. Then, a computation
of C5-fixed points leads us to L12 and L′

12. □

Lemma 4.6. Let C be a G-invariant curve in X with deg(C) ⩽ 10.
Then C is contained in Q = P1 × P1, and is one of the following:

• a smooth irreducible curve of bidegree (1, 7) and genus 0,
• a smooth irreducible curve of bidegree (2, 6) and genus 5,
• the Bring curve B6 of bidegree (3, 3) and genus 4,
• a smooth irreducible curve of bidegree (4, 4) of genus 9,
• a union of 5 conics of bidegree (5, 5).

Proof. Assume that C is not contained in Q. Then Q ·C = deg(C) and
Q ∩ C consists of a G-orbit of points in Q of length deg(C). From the
information of orbits in Lemma 4.3, we see that deg(C) ≥ 12. Thus,
the curve C is contained in Q. A computation of G-invariant divisors
in Q of bidegree (r1, r2) with r1 + r2 ≤ 10 completes the proof. □

Now, we want to classify the G-invariant irreducible curves of degrees
at most 17 which are not contained in Q. The strategy is that for each
such curve C, we find aG-invariant K3 surface containing C and use the
geometry of the K3 surface to proceed. In particular, we are interested
in the pencil P consisting of G-invariant K3 surfaces on X given by

Sa1,a2 := {a1f 3 + a2g = 0} ∩X, [a1 : a2] ∈ P1

where

f =
5∑
i=1

xi and g =
5∑
i=1

x3i .
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Note that the base locus of P is the Bring curve B6. We can find
singular members in P by direct computations.

Lemma 4.7. A surface Sa1,a2 in P is reduced and singular if and only
if one of the following holds:

• [a1 : a2] = [4 ± 3ζ4 : 50] ∈ P1. In these cases, Sing(Sa1,a2)
consists of 5 nodes.

• [a1 : a2] = [6 ± ζ4
√

3/2 : 75] ∈ P1. In these cases, Sing(Sa1,a2)
consists of 10 nodes.

Moreover, when Sa1,a2 is smooth, it does not contain Σ5,Σ
′
5,Σ10 or Σ

′
10.

Remark 4.8. The orbits C6 and C ′
6 are contained in S2,25 ∈ P .

Lemma 4.9. Let C be an G-invariant curve not contained in Q such
that deg(C) ⩽ 17. Then the following statements hold.

(1) deg(C) = 12.
(2) In the pencil P, there is a unique surface S containing C.
(3) If C is irreducible, then C is a Cartier divisor on S.
(4) The surface S is smooth.
(5) The curve C is smooth.
(6) If C is irreducible, then its genus g(C) ∈ {0, 5, 10}.
(7) There exists a G-invariant curve C ′ different from C such that

C ′ ⊂ S, C ′ is isomorphic to C, and C + C ′ ∼Q OS(4).

Proof. We may assume that C is G-irreducible.

(1) Arguing as in Lemma 4.6, we know that deg(C) = 12.
(2) Let P be a general point on C. There exists a unique S ∈ P

such that P ∈ S. If the curve C is not contained in S, then the
number of points in C ∩ S is at most 3 deg(C) = 36. But by
Lemma 4.4, the G-orbit of P has length 60. By contradiction,
we see that C ⊂ S.

(3) In what follows, we will denote by H a general hyperplane sec-
tion on X, and by HS its restriction to S. If the curve C is
contained in the smooth locus of S, then it is Cartier. Assume

that C ∩ Sing(S) is not empty. Let f : S̃ → S be the blowup of

C ∩ Sing(S), and C̃ the strict transform of C by f . We have

C̃ ∼Q f
∗(C)−mE, m ∈ 1

2
Z,

where E is the exceptional divisor of f . To show that C is
Cartier, it suffices to prove that m is an integer. Denoting by

EP the component of E mapped to P , we have C̃ · EP = 2m.
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But this intersection number is preserved by the action of the
stabilizer of P . By Lemma 4.7, we have s = |C ∩ Sing(S)| ∈
{5, 10}. If s = 5, the stabilizer of P is A4, and 2m = 4a +
6b+ 12c, where a, b, c ∈ Z≥0, since 4, 6, and 12 are the possible
lengths of A4-orbits on P1. It follows that m is an integer, and
C is Cartier. If s = 10, then the stabilizer of P is S3, and
2m = 2a + 3b + 6c. If b = 0, then m is an integer and we are
done. Assume that b ≥ 1. We have

C̃2 = (f ∗(C)−mE)2 = C2 − 2sm2 ≤ C2 − 35.

By Hodge index theorem, we have

C2 ≤ (C ·HS)
2

(HS)2
= 24, and C̃2 ≤ −11,

which is impossible and we obtain a contradiction.
(4) If C is reducible, the assertion follows from Remark 4.8. Assume

that C is irreducible. From [16, Proposition 6.7.3], we know that
rk(PicG(S)) =1 or 2, and S is smooth in the latter case. Assume
that S is singular, then PicG(S) = Z and it is generated by HS

since (HS)
2 = 6 is not a square. It follows that C ∼ nHS, for

some positive integer n. Note that deg(C) = 12 implies that
n = 2. But one can check that all G-invariant quadratic forms
on P4 are linear combinations of

∑5
i=1 x

2
i and (

∑5
i=1 xi)

2. We
deduce that no G-invariant curve in S is linearly equivalent to
2HS, hence we obtain a contradiction.

(5) If C is reducible, the assertion follows from Lemma 4.5. Assume
that C is irreducible and singular, the singular locus of C is
a union of G-orbits. Since S is smooth, the curve C does not
contain any orbit of length ≤10, by Lemma 4.3. Hence, Sing(C)
must be an orbit of length at least 12. Let us show that this is
impossible. Again, Hodge index theorem gives

C2 ≤ (C ·HS)
2

(HS)2
= 24.

If this is an equality, then C ∼ nHS, for some n ∈ Z, and we
have proved that this is impossible. So we have C2 < 24, and
since the self-intersection of a curve on a K3 surface is even, we
get C2 ≤ 22. It follows that the arithmetic genus pa(C) of C
satisfies C2 = 2pa(C)−2, i.e., pa(C) ≤ 12. Thus, C cannot have
more than 12 singular points. If C has 12 singular points, since
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all orbits of length 12 are in Q, we have 12 = Q ·C ≥ 2 ·12 = 24,
which is a contradiction.

(6) We have proved that pa(C) ≤ 12 and that C is smooth, so
its genus g(C) ≤ 12. Note that C only contains one orbit of
length 12 since C ·Q = 12. The using a classification of genera
of smooth irreducible curves with A5-actions and their orbit
structures [16, Lemma 5.1.5], we deduce that g(C) ∈ {0, 5, 10}.

(7) Consider the action of S5 given by the permutations of the
coordinates leaving X and S invariant. By [14], there is no S5-
invariant irreducible curve of degree 12 not contained in Q. Let
C ′ be the other curve in the S5-orbit of C. Since C + C ′ is of
degree 24 and since PicS5(S) = Z ·HS, we get C + C ′ ∼ 4HS.

□

4.2. Invariant curves not contained in Q. This subsection is de-
voted to proving the following.

Proposition 4.10. If C is a G-invariant curve in X not contained in
Q, then each irreducible component of C is not a non-canonical center
of (X,λMX).

Proof. This follows from Lemmas 4.11 and 4.12. □

We start with the case of irreducible curves. The method of the
proof will be applied several times in this paper.

Lemma 4.11. If C is an irreducible G-invariant curve not contained
in Q, then C is not a non-canonical center of (X,λMX).

Proof. By Lemma 4.9, the curve C is of degree 12, and there exists a
unique smooth K3 surface S in the pencil P such that C ⊂ S, and the
genus g = g(C) ∈ {0, 5, 10}. Let H be a general hyperplane section
on X, and HS its restriction to S. Assume that C is a non-canonical
center of (X,λMX). Then multC(λMX) > 1. We have

λMX |S ∼Q mC +∆, m ≥ multC(λMX) > 1

for some divisor ∆ on S not supported along C. In particular, the
divisors

3HS − C ∼Q ∆+ (m− 1)C and 3HS −mC ∼Q ∆

are effective. By Lemma 4.9, there exists an irreducible curve C ′ such
that C ′ is isomorphic to C and C ′ ∼Q 4HS − C.
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(1) Assume that g = 0. We have (C ′)2 = (4HS −C)2 = −2. So the
divisor 4HS − C is on an extremal ray of the Mori cone of S.
Since HS is ample, it implies that C ′ −HS ∼Q 3HS − C is not
rationally equivalent to any effective divisor. Hence, we get a
contradiction.

(2) Assume that g = 5. Notice that C ′ is nef since it is an irre-
ducible curve on a smooth surface, and (C ′)2 = 2g(C ′)− 2 = 8.
But

(3HS − C) · C ′ = (3HS − C) · (4HS − C) = −4 < 0,

which gives a contradiction.
(3) Assume that g = 10. Let us first show that the linear system

|3HS − C| has no fixed part. Notice that its mobile part is at
least a pencil. Indeed, by Riemann-Roch theorem, we have

h0(3HS − C) ≥ 2 +
1

2
(3HS − C)2 = 2.

So, if it has a base curve, it is of degree lower than 6. But there
is no such G-invariant curve not contained in Q. The linear
system |3HS − C| also does not have any fixed point. Indeed,
we have (3HS −C)2 = 0, so the curves in this linear system are
disjoint. Hence, there is no base curve in |3HS −C| other than
C and it is nef. But (3HS − C) · (3H −mC) < 0, which yields
a contradiction.

□

We exclude reducible curves in a similar way.

Lemma 4.12. If C is a reducible G-invariant curve of degree 12 not
contained in Q, then each irreducible component of C is not a non-
canonical center of (X,λMX).

Proof. By Lemma 4.5, C is the union of one of the two orbits C6 and C ′
6

of 6 conics. Note that C6 and C ′
6 are exchanged by the S5-permutation

action. Without loss of generality, assume that C is the union of conics
in C6 and components of C are non-canonical centers of (X,λMX). Let
C ′ be the union of conics in C ′

6. By Remark 4.8, C ∪ C ′ is contained
in the smooth K3 surface S = S2,25 ∈ P under the notation of Lemma
4.7. Let HS be a general hyperplane on S. Similarly as in Lemma 4.11,
we know that

3HS −mC
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is an effective divisor for some m > 1. Using equations, we find that
C + C ′ ∼Q 4HS. Note that C ′ is on the border of the Mori cone of
S, since it is the disjoint union of six conics where each of them has
self-intersection −2. So C ′ −HS ∼Q 3HS − C is not pseudo-effective,
which contradicts the effectiveness of 3HS −mC. □

4.3. Points outside Q.

Lemma 4.13. Let P ∈ X and Σ be its G-orbit. If P /∈ Q and |Σ| ≠ 5,
then P is not a center of non-canonical singularities of (X,λMX).

Proof. Assume that P is a non-canonical center of (X,λMX). We
consider two cases:

Case 1: When |Σ| ≥ 20. Remark 2.5 implies that (X, 3
2
λMX) is not

log-canonical at P . Let Λ be the non-log-canonical locus of (X, 3
2
λMX),

and Λ0 its zero-dimensional component.
Assume that a G-invariant curve C is contained in Λ. Consider two

general elements M1,M2 ∈ MX , we have that

9

4
λ2(M1 ·M2) = mC +∆, m ≥ (multC(

3

2
λMX))

2

for an effective divisor ∆ whose support does not contain C. Intersect-
ing with a general hyperplane section H on X, we obtain that

81

2
= H · 9

4
λ2(M1 ·M2) ≥ m deg(C).

By Theorem 2.2, we know that m > 4 and it follows that

deg(C) ≤ 10.

Lemma 4.6 implies that C ⊂ Q. By assumption, we have Σ ̸⊂ Q.
Therefore, we know that Σ ⊂ Λ0.

Let I = I(X, 3
2
λMX) be the multiplier ideal sheaf of 3

2
λMX on X.

Note that

KX +
3

2
MX +

1

2
OX(1) ∼Q OX(2).

Then, by Nadel vanishing theorem (cf. Theorem 2.6), we know that
h1(X, I ⊗ OX(2)) = 0 and it follows that

20 ≤ |Σ| ≤ |Supp(I)| ≤ h0(OX(2)) = 14,

which is a contradiction.
Case 2: When |Σ| < 20, then by the classification of orbits we know

that |Σ| = 10. This case is excluded by [14, Proof of Proposition 3.4].
The proof there applies verbatim. □
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4.4. Points inside Q. Here we finish the proof of Proposition 4.1 by
finding the G-equivariant α-invariant of Q.

Lemma 4.14. One has αG(Q) =
3
2
.

Proof. By Lemma 4.6, we see that the Bring curve B6 of bidegree (3, 3)
is the G-invariant divisor in Q with the least degree. By definition of
the α-invariant, we have αG(Q) ≤ 3

2
. Assume that αG(Q) <

3
2
. Then

there exists a G-invariant effective Q-divisor D on S such that

D ∼Q OQ(3, 3)

and (Q,D) is not log-canonical. Let Λ be the non-log-canonical locus of
(Q,D). Assume that Λ contains a curve C ⊂ Q. We have D = mC+∆
where m > 1 and ∆ is an effective divisor whose support does not
contain C. Intersecting with a general hyperplane section H, we obtain

6 = H ·D ≥ m deg(C).

It follows that deg(C) < 6. By Lemma 4.6, such curves do not exist.
Thus, Λ is 0-dimensional. We have |Λ| ≥ 12 since orbits of length 5

and 10 are not in Q. Let ε ∈ Q>0 such that (Q, (1− ε)D) is not klt at
points in Λ, and I the multiplier ideal sheaf of (1− ε)D. Note that

KQ + (1− ε)D + 3εOQ(1, 1) ∼Q OQ(1, 1).

Applying Nadel vanishing theorem (cf. Theorem 2.6), we obtain

12 ≤ |Supp(I)| ≤ h0(OQ(1, 1)) = 4,

which is absurd. So we obtain a contradiction and αG(Q) =
3
2
. □

Corollary 4.15. Let Z be a non-canonical center of the pair (X,λMX),
then Z ̸⊂ Q.

Proof. If Z is contained in Q, then by inversion of adjunction, Z is a
non-log-canonical center of (Q, λMX |Q), which contradicts Lemma 4.14.

□

5. The standard A5-action on the cubic threefold

In this section, we study the cubic threefold Y ⊂ P4
x1,...,x4

given by

x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5+

+ x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5 = 0

with the same G = A5-action through permutations of coordinates.
Note that Sing(Y ) consists of 5 nodes. The aim of this section is to
prove the following result.
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Proposition 5.1. Let MY be a non-empty mobile G-invariant linear
system on Y , and let µ ∈ Q such that µMY ∼Q −KY . Then the log
pair (Y, µMY ) is canonical away from Sing(Y ).

Proof. This follows from Propositions 5.6 and 5.7, and Corollary 5.9.
□

Remark 5.2. If a curve C is a center of non-canonical singularities,
then for any two general members M1,M2 ∈ MY , we have that

λ2(M1 ·M2) = mC +∆

for some m > 1 and some effective divisor ∆ not supported along C.
Intersecting with a general hyperplane H, we obtain that

12 = λ2(M1 ·M2 ·H) > deg(C).(5.1)

Thus, we need to consider G-orbits of lengths less than 20 and G-
invariant curves of degrees lower than 12. As in the previous section,
we split into subsections according to whether or not a potential non-
canonical center of (Y, µMY ) belongs to the G-invariant hyperplane
section.

5.1. Small G-orbits and G-invariant curves of low degrees. We
begin with identifying small G-orbits and G-invariant curves of low
degrees in Y .

Lemma 5.3. A G-orbit of points in Y with length < 20 is one of the
following:

Σ1
5 = the orbit of [1 : 0 : 0 : 0 : 0],

Σ2
5 = the orbit of [−2 : 3 : 3 : 3 : 3],

Σ1
10 = the orbit of [1 : 1 : 0 : 0 : 0],

Σ2
10 = the orbit of [1 : −1 : 0 : 0 : 0],

Σ3
10 = the orbit of [−6− 2

√
6 : −6− 2

√
6 : 6 : 6 : 6],

Σ4
10 = the orbit of [−6 + 2

√
6 : −6 + 2

√
6 : 6 : 6 : 6],

Σ1
12 = the orbit of [1 : ζ5 : ζ

2
5 : ζ35 : ζ45 ],

Σ2
12 = the orbit of [1 : ζ25 : ζ45 : ζ5 : ζ

3
5 ],

Σ15 = the orbit of [0 : −1 : −1 : 1 : 1],

where the length of each orbit is indicated by the subscript.
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With the notation above, Sing(Y ) = Σ1
5. There is a unique G-

invariant hyperplane section in Y , given by

R := {x1 + x2 + x3 + x4 + x5 = 0} ∩ Y.
Note that R is the Clebsch cubic surface. One can check that

Σ2
10,Σ

1
12,Σ

2
12,Σ15 ∈ R, Σ1

5,Σ
2
5,Σ

1
10,Σ

3
10,Σ

4
10 ̸∈ R.(5.2)

We recall some facts about the A5-equivariant geometry of R, see [17,
Section 6.3] for more details. The surface R is G-linearizable. Indeed,
there are two unions L6, L

′
6 of 6 pairwise disjoint lines in R. Respective

contractions of L6 and L′
6 give two G-equivariantly birational maps

π, π′ : R → P2. There is a unique G-invariant conic in P2. We denote
its strict transforms under π and π′ by C6 and C ′

6 respectively.

Lemma 5.4. Let C be a G-invariant curve in Y with deg(C) < 10.
Then C ⊂ R, deg(C) = 6, and C is one of the following

L6, L
′
6, C6, C

′
6, or the Bring curve B6 defined by (4.2).

Proof. If C ̸⊂ R, then C · R = deg(C) < 10. By (5.2), we know that
this is impossible. Thus C ⊂ R. The rest of the lemma follows from
[17, Theorem 6.3.18]. □

Lemma 5.5. Let C be a G-invariant curve in Y , of degree 10 and not
contained in R. Then C is the union of 10 lines in the G-orbit of

{x3 = x4 = x5 = 0} ⊂ Y.

Moreover, these lines are the lines that pass through pairs of points in
the singular locus of Y .

Proof. We may assume that C is G-irreducible. When C is an irre-
ducible curve, by computation, we check that there is no G-invariant
irreducible curve with a generic stabilizer. So G acts faithfully on C.
Note that C · R = deg(C) = 10. By (5.2), we see that C ∩ R = Σ2

10

where all 10 points are smooth points of C. The stabilizer of a point
in C ∩ R is S3, which is a contradiction, since it should act faithfully
in the tangent space of C at this point. It follows that C is a reducible
curve.

So C can be 5 conics or 10 lines. Assume that C consists of 5 conics.
Each conic spans a plane in P4, left invariant by A4 ⊂ G. Each such
plane intersects X along the conic and a residual line. Therefore, we
obtain a G-orbit of 5 lines. One can check that there is no such orbit
of lines in X. Similarly, we find that there is only one G-orbit of 10
lines, as is given in the assertion.
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□

5.2. Invariant curves not contained in R. With the classification
of G-irreducible invariant curves, we exclude curves not contained in R
as non-canonical centers in this case.

Proposition 5.6. Let C be a G-invariant curve in Y not contained in
R. Then each irreducible component of C is not a non-canonical center
of the pair (Y, µMY ).

Proof. Assume that the irreducible components of C are non-canonical
centers. By Remark 5.2, we have deg(C) < 12. From (5.2), we see that

deg(C) = 10

and C is the union of 10 lines given in Lemma 5.5. This is impossible
by [14, Proof of Proposition 3.5]. □

5.3. Points outside R.

Proposition 5.7. Let P be a point outside R, and Σ its G-orbit. If
Σ ̸= Σ1

5, then P is not a non-canonical center of (Y, µMY ).

Proof. Assume that P is a non-canoncial center of (Y, µMY ). By Re-
mark 2.5, we know that P is a non-log-canonical center of (Y, 3

2
µMY ).

Let ε be a positive rational number such that

Σ ⊂ Ω, Ω := Nklt(Y, (
3

2
− ε)µMY )

where Ω is the non-klt locus of (Y, (3
2
− ε)µMY ).

Assume that there is a curve C ⊂ Ω. LetM1,M2 ∈ (3
2
−ε)µMY and

H a general hyperplane section of Y . Similarly as before, we have

27 ≥ H · (3
2
− ε)2µ2(M1 ·M2) ≥ m deg(C) > 4 deg(C)

for some number m > 4 by Theorem 2.2. Lemma 5.4 implies that
deg(C) = 6 and C ⊂ R. This shows that every curve in Ω is in R. It
follows that the 0-dimensional component Ω0 of Ω is non-empty since
P ̸∈ R. In particular, Ω0 ⊃ Σ. Observe that

KY + (
3

2
− ε)µMY + 2εOY (1) ∼Q OY (1).

Let I be the multiplier ideal sheaf of (3
2
− ε)µMY . By Nadel vanishing

theorem (Theorem 2.6), we have h1(I ⊗OY (1)) = 0. This implies that

|Ω0| ≤ h0(OY (1)) = 5.
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It follows that Ω0 = Σ = Σ1
5 or Σ2

5. The latter is impossible by [14,
Proposition 3.5]. □

5.4. Points inside R. Similarly as in the previous section, it suffices
to find the G-equivariant α-invariant of R.

Lemma 5.8. One has αG(R) = 2.

Proof. Note that B6 ⊂ R is a G-invariant effective divisor such that
B6 ∼Q −2KR. It follows that αG(R) ≤ 2. Suppose that αG(R) < 2.
Then there exists a G-invariant effective Q-divisor D ∼Q −2KR such
that (R,D) is not log-canonical. Let Λ be the non-log-canonical locus
of (R,D). Let ε ∈ Q>0 such that the non-klt locus Ω of (R, (1− ε)D)
contains Λ. Assume that Ω contains some curve C ′, then

(1− ε)D = mC ′ +∆, m ≥ 1

for some effective 1-cycle ∆ whose support does not contain C ′. Inter-
secting with a general hyperplane section H on R, we obtain

6 > H · (1− ε)D = H · (mC ′ +∆) ≥ deg(C ′),

which is impossible by Lemma 5.4.
Thus, Ω consists of finitely many points. Let n = |Λ| and I be the

multiplier ideal sheaf of (1− ε)µMR. Observe that

KR + (1− ε)D + 2εOR(1) ∼Q OR(1).

By Nadel vanishing theorem, we know that h1(OR(1)⊗ I) = 0 and

n = |Λ| ≤ |Ω| ≤ h0(OR(1)) = 4,

which implies that n = 0 since there is no G-orbit of length ≤ 4 in
R. □

Corollary 5.9. Let Z be a non-canonical center of the pair (Y, µMY ),
then Z ̸⊂ R.

Proof. Assume that Z is contained inR. By inversion of adjunction, the
pair (R, µMX |R) is not log-canonical, which contradicts Lemma 5.8.

□

6. The nonstandard A5-action on the quadric threefold

In this section, we study the non-standard A5-action. Let G = A5

acting on the smooth quadric threefold given by

(6.1) X =

{ ∑
1≤i≤j≤5

xixj = 0

}
⊂ P4
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with the G-action generated by

(x) 7→ (x4, x1, x5, x2,−x1 − x2 − x3 − x4 − x5),

(x) 7→ (x4,−x1 − x2 − x3 − x4 − x5, x1, x3, x2).(6.2)

The aim of this section is to prove the following result.

Proposition 6.1. Let MX be a non-empty mobile G-invariant linear
system on X, and λ ∈ Q such that λMX ∼Q −KX . Let Z be a G-
irreducible subvariety whose components are centers of non-canonical
singularities of (X,λMX). Then Z is one of the following:

• the union of 5 points in the orbit Σ5 or Σ
′
5 given in Lemma 6.3,

• the rational curve C4 or C ′
4 of degree 4 given by (6.5),

• the rational curve C8 or C
′
8 of degree 8 described in Remark 6.16,

• (possibly) a smooth irreducible curve of degree 10 and genus 6.

Proof. This follows from Proposition 6.6 and Proposition 6.22. □

Remark 6.2. Equations of C4, C
′
4, C8, C

′
8 can be found in [37]. Sark-

isov links centered at these curves are presented in later subsections.
We do not know the existence of the curve of degree 10. This is not
necessary for our main result, see Lemma 6.13.

Note that the G-action on the ambient P4 arises from the unique
5-dimensional irreducible linear representation of G. The nature of
this action creates more challenges for our classifications since there
are more possibilities of G-invariant curves and non-canonical centers,
cf. Proposition 4.1. The A5-equivariant geometry of K3 surfaces turns
out to be crucial to our analysis in this section.

First, we classifyG-orbits of lengths less than 20, and theG-irreducible
invariant curves of degrees at most 17. In the second subsection, we
will study the singularities of pairs (X,λMX) along G-invariant curves,
and in the third subsection, we will study them along G-orbits.

6.1. Small G-orbits and G-invariant curves of low degrees.

Lemma 6.3. A G-orbit of points in X with length < 20 is one of the
following:

Σ5 = the orbit of [1 : ζ6 − 1 : −ζ6 : ζ6 − 1 : 1],

Σ′
5 = the orbit of [1 : −ζ6 : ζ6 − 1 : −ζ6 : 1],

Σ12 = the orbit of [ζ35 : ζ25 : 0 : ζ5 : 1],

Σ′
12 = the orbit of [ζ45 : ζ5 : 0 : ζ35 : 1],

where the length of each orbit is indicated by the subscript.
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Lemma 6.4. Let C be a G-invariant curve in X with deg(C) ≤ 17.
Then C has trivial generic stabilizer, i.e, the G-orbit of a general point
in C has length 60.

Proof. By direct computation, one sees that the only irreducible curves
in X with non-trivial generic stabilizers are lines and conics, and their
G-orbits have lengths 20 and 15 respectively. □

Lemma 6.5. Let C be a G-invariant reducible curve of degree at most
17. Then C is the union of curves in one of the following orbits:

• an orbit of 5 conics

C5 = orbit of {x1 + x4 = x2 + x3 = 0} ∩X,
• one of the following 2 orbits of 6 conics

C6 = orbit of C1, C ′
6 = orbit of C2,

where

a = ζ5 + ζ45 ,

C1 = {x1 − x3 − a(x4 − x5) = x2 + a(x3 − x4)− x5 = 0} ∩X,
C2 = {x1−x3+(1+ a)(x4−x5) = x2− (1+ a)(x3−x4)−x5 = 0}∩X,

• one of the following 2 orbits of 12 lines

L12 = the orbit of {
5∑
i=1

xi =
5∑
i=1

ζ i−1
5 xi =

5∑
i=1

ζ
3(i−1)
5 xi = 0},

L′
12 = the orbit of {

5∑
i=1

xi =
5∑
i=1

ζ i−1
5 xixi =

5∑
i=1

ζ
2(i−1)
5 xi = 0}.

Each of the orbits above consists of pairwise disjoint curves.

Proof. The proof is similar to that of Lemma 4.5. □

6.2. Invariant curves. Similarly as in Section 4 (see Remark 4.2), if
a curve C is in the non-canonical center of (X,λMX), we have

deg(C) ≤ 17.

The main result of this subsection is:

Proposition 6.6. Let MX be a non-empty mobile G-invariant linear
system on X, and λ ∈ Q such that λMX ∼Q −KX . If a curve C is
a non-canonical center of (X,λMX), then C is an irreducible curve of
degree 4,8, or 10, and is one of the curves described in Proposition 6.1.



24 A. PINARDIN AND ZH. ZHANG

Proof. We explain how the results in this subsection show the assertion.
Lemma 6.17 shows that if C is contained in certain surfaces R or R′

explicitly given by (6.4), then deg(C) = 4. When C is not in R or R′,
Lemma 6.9 shows deg(C) ∈ {8, 10, 12, 16}. Lemma 6.11 excludes the
case deg(C) = 12. Lemmas 6.12 and 6.19 show that deg(C) = 16 is
also impossible. Then Lemmas 6.13, 6.15, 6.17 and 6.18 prove that all
such curves are among those described in Proposition 6.1. □

First, we present curves of degree 4. Consider the pencil consisting
of G-invariant cubics in P4 given by

{a1f1 + a2f2 = 0} ⊂ P4
x1,...,x5

, [a1 : a2] ∈ P1

where

(6.3)

f1 = x21x2 + x1x
2
2 + 2x1x2x3 + x22x3 + x2x

2
3 + 2x2x3x4 + x23x4 + x3x

2
4+

+ x21x5 + 2x1x2x5 + 2x1x4x5 + 2x3x4x5 + x24x5 + x1x
2
5 + x4x

2
5,

f2 = x21x3 + x1x
2
3 + x21x4 + 2x1x2x4 + x22x4 + 2x1x3x4 + x1x

2
4 + x2x

2
4+

+ x22x5 + 2x1x3x5 + 2x2x3x5 + x23x5 + 2x2x4x5 + x2x
2
5 + x3x

2
5.

In particular, there are two G-invariant chordal cubics in P4, i.e., the
cubic threefold whose singular locus is a twisted quartic curve. Their
intersections with X are two non-normal surfaces, given by

R = {(−ζ35 − ζ25 + 1)f1 + f2 = 0} ∩X,(6.4)

R′ = {(ζ35 + ζ25 + 2)f1 + f2 = 0} ∩X.

Their intersection R ∩ R′ is an irreducible curve whose singular locus
is Σ12 ∪ Σ′

12. Let

C4 = Sing(R), C ′
4 = Sing(R′).(6.5)

Then C4 and C ′
4 are quartic rational normal curves such that

Σ12 ∈ C4 \ C ′
4, Σ′

12 ∈ C ′
4 \ C4.

These two curves can be non-canonical centers of (X,λMX). Sarkisov
links centered at them are involutions on X, presented in Lemma 6.15.
Now, let P be the pencil consisting of G-invariant K3 surfaces Sa1,a2 in
X given by

Sa1,a2 := {a1f1 + a2f2 = 0} ∩X, [a1 : a2] ∈ P1.(6.6)
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Remark 6.7. Each of the orbits in Lemma 6.5 is contained in a unique
member in P . We record

orbit a1 a2
C5 1 1
C6 63(ζ35 + ζ25 ) + 145 89
C ′
6 63(ζ35 + ζ25 ) + 145 89

L12 −ζ35 − ζ25 + 1 1
L′

12 ζ35 + ζ25 + 2 1

where each orbit in the first column is contained in Sa1,a2 ∈ P for a1, a2
indicated in the same row.

Lemma 6.8. A surface Sa1,a2 ∈ P is singular if and only if

(1) [a1 : a2] = [−3ζ6 + 8 : 7], Sing(Sa1,a2) = Σ5,
(2) [a1 : a2] = [3ζ6 + 5 : 7], Sing(Sa1,a2) = Σ′

5,
(3) [a1 : a2] = [−ζ35 − ζ25 + 1 : 1], Sing(Sa1,a2) = C4, Sa1,a2 = R,
(4) [a1 : a2] = [ζ35 + ζ25 + 2 : 1], Sing(Sa1,a2) = C ′

4, Sa1,a2 = R′.

Moreover, when Sa1,a2 ∈ P is smooth, it contains no orbit of length 5.

Proof. First, we consider the case when S = Sa1,a2 is normal. The
singular locus Sing(Sa1,a2) forms a G-invariant set. Note that KS ∼ 0.
If S has non-du Val singularities, it has at least 12 of them, since the
smallest orbit on X has length 12. This is impossible. Thus, S has at
worst du Val singularities and its minimal resolution is a smooth K3
surface, whose Picard rank is bounded by 20. Then |Sing(Sa1,a2)| < 20
and Sing(Sa1,a2) consists of orbits in Lemma 6.3. One can check that
the four cases in the assertion are the only possible cases. Note that
being singular along Σ12 or Σ′

12 forces Sa1,a2 to be non-normal.
Now assume that S = Sa1,a2 is singular along a curve Z. Let S ′ be a

general member of P . Recall that S ′ ∩ S is an irreducible curve whose
singular locus is Σ12 ∪ Σ′

12. It follows that ∅ ≠ Z ∩ S ⊂ Σ12 ∪ Σ′
12 and

the only possible cases are S = R or R′. □

Lemma 6.9. Let C be a G-invariant curve not contained in R ∪ R′

such that deg(C) ≤ 17. Then the following assertions hold.

(1) We have deg(C) ∈ {8, 10, 12, 16}.
(2) The irreducible components of C are pairwise disjoint.
(3) In the pencil P, there exists a unique surface S containing C.
(4) If C is irreducible, then C is a Cartier divisor on S.
(5) The surface S is smooth.
(6) If deg(C) ̸= 16, then C is smooth.



26 A. PINARDIN AND ZH. ZHANG

(7) If deg(C) ̸= 16 and C is irreducible, then its genus satisfies

g(C) =

{
0 if deg(C) = 8 or 12,

6 if deg(C) = 10.

Proof. We may assume that C is G-irreducible.

(1) Since C is not contained in R, we have C ·R = 3deg(C) ≤ 51,
and C ∩R splits into G-orbits. Hence,

C ·R = 12a+ 20b+ 30c = 3deg(C) ≤ 51, a, b, c ∈ Z≥0.

If a > 0, since R is singular at Σ12, we have 2 ≤ a ≤ 4 and
b = c = 0. Then deg(C) ∈ {8, 12, 16}. If a = 0, then b = 0 and
c = 1. In this case, deg(C) = 10.

(2) This is obvious if C is irreducible. When C is reducible, the
assertion follows from the classification in Lemma 6.5.

(3) Let P be a general point of C. There exists a unique surface S
in P that passes through P . The intersection S ∩ C contains
the orbit of P , which has length 60 by Lemma 6.4. If C is not
contained in S, we have that C ·S = 3deg(C) ∈ {24, 30, 36, 48},
which is a contradiction. Therefore C ⊂ S.

(4) Assume that C ∩ Sing(S) ̸= ∅, otherwise C is Cartier. Let

f : S̃ → S be the blowup of C ∩ Sing(S). Denoting by C̃ the

strict transform of the curve C by f , we have C̃ ∼Q f
∗(C)−mE

for some m ∈ 1
2
Z, where E is the exceptional divisor of f .

Consider a point P ∈ C ∩ Sing(S), and a component EP of E

mapped to P . We have C̃ ·EP = 2m. By assumption, we have
S ̸= R and R′. Lemma 6.8 implies that |C ∩ Sing(S)| = 5 and
the stabilizer of P is A4, which acts faithfully on EP = P1. It
follows that 2m = 4a+6b+12c, for some non-negative integers
a, b, c, because the possible lengths of A4-orbits on P1 are 4,6,
and 12. Hence m is an integer, and C is Cartier.

(5) When C is reducible, this follows from Remark 6.7. We assume
that C is irreducible. The proof is similar to that of Lemma
4.9. Assume that S is singular, then rk(PicG(S)) = 1. Let H
be a general hyperplane section on X, and HS its restriction to
S. Since deg(HS) = 6 is not a square, we know that PicG(S) is
generated by HS. Note that C ∈ PicG(S) because C is Cartier.
It follows that C ∼ nHS for some integer n. We know that
deg(C) = C · HS = 6n, which implies that deg(C) = 12 and
n = 2. Recall that the only G-invariant quadric hypersurface
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in P4 is X. So there is no G-invariant curve linear equivalent
to 2HS and we obtain a contradiction.

(6) When C is reducible, this follows from Lemma 6.5. We assume

that C is irreducible and singular. Let C̃ be a minimal resolu-
tion of singularities of C. Since S is smooth, then by Lemma
6.8, we know that S does not contain an orbit of length 5. We
get

g(C) = g(C̃) = pa(C̃) = pa(C)− 12a− 20b− 30c− 60d,

where a, b, c, d are non-negative integers which are not all 0,
g(C) is the geometric genus, and pa(C) is the arithmetic genus
of C. Hodge index theorem gives

C2 ≤ (C ·HS)
2

(HS)2
.(6.7)

If this is an equality, then C ∼ nHS, for some n ∈ Z, and we
have proved above that this is impossible. So (6.7) is a strict
inequality, i.e.,

C2 ≤


10 if deg(C) = 8,

16 if deg(C) = 10,

22 if deg(C) = 12.

Recall that pa(C) =
C2+2

2
. We obtain that

pa(C) ≤


6 if deg(C) = 8,

9 if deg(C) = 10,

12 if deg(C) = 12.

(6.8)

Then, the only possibility is a = 1, b = c = 0 and

deg(C) = 12, pa(C) = 12, g(C) = 0.

In this case, we have C · B = 36, where B = R ∩ R′ is an
irreducible curve of degree 18. On the other hand, since both
C and B are singular at a common orbit of length 12, we have
C ·B ≥ 12 ·4 = 48. We obtain a contradiction. So C is smooth.

(7) We know that C is smooth, and we have the bound (6.8) on
its genus. First, when deg(C) = 8, we find all such curves in
Lemma 6.18 and it follows that g(C) = 0. When deg(C) =
10, recall that C contains no orbit of length 12. Then by [17,
Lemma 5.1.5], or by searching through the database of curves
with A5-actions in [33], we find that g(C) = 6. Finally, if
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deg(C) = 12, similarly going through the classification, we get
g(C) = 0.

□

First, we exclude several curves as possible non-canonical centers.

Lemma 6.10. Let C be a G-invariant union of r conics not contained
in R or R′, with r ∈ {5, 6}. Then each irreducible component of C is
not a center of non-canonical singularities of (X,λMX).

Proof. By Lemma 6.9, there exists a unique smooth K3 surface S in
the pencil P containing C. Let HS be a general hyperplane section of
S and m = multC(λMX). Assume that irreducible components of C
are non-canonical centers. Then m > 1, and we have

λMX |S ∼Q mC +∆, m ≥ multC(λMX) > 1

for some effective divisor ∆ on S not supported along C. It follows
that the divisor

3HS − C ∼Q ∆+ (m− 1)C

is effective. On the other hand, consider the divisor on S given by

D = (r − 1)HS − C.

The equations of C are given in Lemma 6.5. By computation, we check
that the linear subsystem in |OX(r− 1)| consisting of surfaces passing
through C does not contain any base curve other than C. It follows
that D is nef. However, we compute

D · (3HS − C) =

{
−8 if r = 5,

−18 if r = 6,

which gives a contradiction. □

Lemma 6.11. Let C be a G-invariant curve of degree 12 not contained
in R or R′. Then each irreducible component of C is not a center of
non-canonical singularities of (X,λMX).

Proof. If C is reducible, it is a union of 6 conics by Lemma 6.5. The
assertion follows from Lemma 6.10. We assume that C is irreducible.
By Lemma 6.9, the curve C is rational, and there exists a smooth K3

surface S in the pencil P containing C. Let HS be a general hyperplane
section on S. We have (4HS −C)2 = −2, and Riemann-Roch theorem
gives h0(4HS − C) ≥ 1. Assume that it is an equality. Then the only
element of |4HS − C| is the class of a G-invariant curve C ′ of degree
12. If C ′ is reducible, by Lemma 6.5, C ′ is either a union of 12 lines
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or 6 conics. None of these is possible: the 12 lines are contained in R
or R′; and C ′2 = −12 if C ′ is a union of 6 conics. It follows that C ′ is
irreducible, in which case we can exclude C ′ as a non-canonical center
the same way as in the proof of Lemma 4.11.

Assume now that h0(4HS−C) > 1. We show that this is impossible.
The linear system |4HS − C| splits into a fixed part F and a mobile
part G. But (4HS−C)2 = −2, so |4HS−C| is not nef. We deduce that
F is not empty. Let F ∈ F . The degree of F is 8 or 10. The latter
case would imply that curves in G have degree 2, i.e., there is a pencial
of rational curves in S, which is impossible on K3 surfaces. Assume
that deg(F ) = 8. Then the degree of a general member M ∈ G is four.
Either M is a smooth elliptic curve or M is rational. Again, the latter
is impossible on K3 surfaces. SoM is a smooth elliptic curve. Consider
the matrix

A =

 H2
S HS · F HS ·M

F ·HS F 2 F ·M
M ·HS M · F M2

 .

Since PicG(S) is of rank at most two by [16, Proposition 6.7.3], the
determinant of A must be zero. But we get

det(A) = det

6 8 4
8 −2 7
4 7 0

 = 186,

hence we obtain a contradiction. □

We turn to G-invariant curves of degree 16, which are necessarily
irreducible. The strategy of the proof is similar, but such curves may
be singular. We first treat smooth curves here. The case of singular
curves will be excluded at the end of this subsection, where we explicitly
find all such curves in equations.

Lemma 6.12. Let C be a smooth irreducible G-invariant curve of de-
gree 16 in X that is not contained in R ∪ R′. Then C is not a non-
canonical center of (X,λMX).

Proof. Let S be the unique smooth K3 surface in P containing C, and
HS a general hyperplane section on S. Similarly as in Lemma 6.11,
we know that 3HS − C is effective and we seek for a contradiction by
finding a nef divisor on S intersecting 3HS − C negatively.

The Hodge index theorem implies that

C2 ≤ (C ·HS)
2

(HS)2
=

128

3
=⇒ C2 ≤ 42, g ≤ 22,
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where g = g(C) is the genus of C. Possible genera of smooth irreducible
curves with A5-actions and their orbit structures are classified in [17,
Lemma 5.1.5]. Recall from the proof of Lemma 6.5 that C contains at
least one G-orbit of length 12. By [17, Lemma 5.1.5], we find that

g ∈ {0, 4, 5, 9, 10, 13, 15, 19, 20},

so C2 = 2g − 2 ∈ {−2, 6, 8, 16, 18, 24, 28, 36, 38}. Put

n =


4 if g ∈ {19, 20},
5 if g ∈ {9, 10, 13, 15},
6 if g ∈ {0, 4, 5}.

One can check that (nHS − C)2 ≥ 0, and

(nHS − C) · (3HS − C) = 2n− 48 + C2 < 0.

Therefore, if nHS−C is nef, we are done. Now let us show that nHS−C
is nef for all possible genera.

Assume that nHS−C is not nef. By Riemann-Roch, (nHS−C)2 ≥ 0
implies that h0(nHS − C) ≥ 2. So |nHS − C| has a mobile part.
Moreover, since nHS − C is not nef, |nHS − C| has a G-irreducible
fixed component F such that deg(F ) ≤ deg(nHS − C). The curves in
the mobile part cannot be rational because S is a K3 surface, and thus
their degree is at least 4. It follows that

deg(F ) ≤ deg(nHS − C)− 4 =


4 if g ∈ {19, 20},
10 if g ∈ {9, 10, 13, 15},
16 if g ∈ {0, 4, 5}.

Lemma 6.9 also implies that deg(F ) ∈ {8, 10, 12, 16}. This immediately
excludes the possibility g ∈ {19, 20}. In the other two cases, since
rkPicG(S) ⩽ 2, the intersection matrix of F,HS and C is degenerate.
In particular, let x = F · C, we have

det

 F 2 x deg(F )
x C2 16

deg(F ) 16 6

 = 0,(6.9)

which gives a quadratic equation in x. We show that this equation does
not have integer solutions satisfying the geometric conditions. Since F
is a fixed component, we know that h0(F ) = 1, and by Riemann-Roch,
F 2 < 0. Hence, if F is irreducible, then, by adjunction formula, we
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have F 2 = −2. When F is reducible, F 2 is supplied by Lemma 6.5. In
particular, we have

F 2 =


−12 if deg(F ) = 12 and F is reducible,

−10 if deg(F ) = 10 and F is reducible,

−2 if F is irreducible,

Now, running through all possibilities, we find that (6.9) has an integer
solution only in the following two cases:

(1) n = 6, deg(F ) = 16, F 2 = −2, C2 = −2, C · F = −2,
(2) n = 5, deg(F ) = 10, F 2 = −10, C2 = 16, C · F = 0.

So, in the first case, we have C = F , and in the second case, C is a union
of 5 conics. In both cases, we know that the linear system |nH−C−F |
is not empty since it has the same mobile part as |nH − C|. One can
compute that (nH−C−F )2 < 0, implying that |nH−C−F | has a fixed
component of degree 4, which is impossible. We obtain a contradiction,
and this completes the proof. □

Now we turn to irreducible curves of degree 8 or 10. Such curves
can indeed be non-canonical centers. We characterize the Sarkisov
links arising from them. The following result will allow us to prove in
Section 8 that up to some G-birational self-map of X which normalizes
the image of G in Aut(X), the pair (X,λMX) is canonical away from
Σ5 ∪ Σ′

5.

Lemma 6.13. Let Z be a G-invariant smooth irreducible curve Z not
contained in R ∪ R′, of degree 8 and genus 0, or of degree 10 and
genus 6. Assume that Z is a non-canonical center of (X,λMX). Let

φ : X̃ → X be the blowup of Z. Then −KX̃ is big and nef. Moreover,
for n ≫ 0, the linear system |n(−KX̃)| is base point free and gives

a small birational map ψ : X̃ → V . There exists the following G-
equivariant commutative diagram

(6.10) X̃
χ //

φ

��

ψ

��

X̃ ′

ψ′

��

φ′

  
X

δ

33V X ′

where

(1) χ is a composition of flops,
(2) ψ′ is also a small birational map,
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(3) φ′ is a KX̃′-negative extremal contraction,
(4) X ′ is also a smooth quadric threefold, and φ′ is the blowup of a

curve Z ′ ⊂ X ′ of the same degree and genus as Z,
(5) X and X ′ are G-isomorphic, i.e. the birational map δ normal-

izes the image of G in Aut(X).

Proof. First, we introduce some notation. Let g(Z) be the genus of Z,
E the exceptional divisor of φ, H a general hyperplane section on X,

and H̃ the pullback of H to X̃. Let S be the unique K3 surface in P
containing Z, S̃ its strict transform on X̃, and HS the restriction of H

to S. Note that S̃ ≃ S since S is smooth.
To show that −KX̃ is big, we compute

(−KX̃)
3 = (3H̃ − E)3 = 2g(Z)− 6 · deg(C) + 52 = 4 > 0.

To show that −KX̃ is nef, it suffices to show that |3HS−Z| contains
no other base curve than Z, i.e., 3HS−Z is nef. Indeed, if −KX̃ is not

nef, then the divisor −KX̃ |S̃ = (3H̃ − E)|S̃ = 3HS − Z is also not nef.
Let us first do this when Z is a rational curve of degree 8. By

Riemann-Roch, h0(3HS − Z) = 2 + (3HS−Z)2
2

= 4, so the degree 10
linear system |3HS − Z| has a non-trivial mobile part. Hence a fixed
curve F of this linear system has degree at most 9. Lemma 6.9 implies
that F is of degree 8. But then the mobile part of 3HS − Z contains
a pencil of rational curves, which is impossible on K3 surfaces. We
conclude that (3HS − Z) does not contain a base curve other than Z.

Similarly, if Z has degree 10 and genus 6. Riemann-Roch theorem

implies that h0(3HS − Z) = 2 + (3HS−Z)2
2

= 4, so the degree 8 linear
system |3HS − Z| has a nontrivial mobile part. Hence, a fixed curve
F of this linear system is of degree at most 7. Lemma 6.9 implies that
this is impossible.

We prove that −KX̃ is big and nef. Then it follows from base point
free theorem that the linear system |n(−KX̃)| is base point free for

n ≫ 0, and it gives a birational map ψ : X̃ → V . Either ψ contracts
a divisor, or ψ is small. However, the former case is impossible, be-
cause we assume that Z is a center of non-canonical singularities of
(X,λMX). If ψ contracts a divisor, then this divisor must be a fixed
component of the linear system MX , which is impossible, since MX is
mobile by assumption.

Hence, we see that ψ is a small birational contraction. Then the
existence of G-equivariant commutative diagram and (1) – (3) follow
from the Sarkisov program. This is a type II Sarkisov link. Moreover,
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(4) follows from matching the numerical invariants with a classification
of such links in [28, 29, 23]. Our cases correspond to rows 71 and 72
of Table 1 in [23]. In particular, we find X ′ is also a smooth quadric.
To show (5), we notice that any other action of A5 on the quadric
X ′ has an invariant hyperplane section, which would intersect Z ′ in
deg(Z ′) = 8 or 10 points. But, by [16], the smallest possible orbit of
A5 on a smooth curve is of length 12, so we get a contradiction. □

Remark 6.14. Lemma 6.13 shows that if such a Sarkisov link exists,
it necessarily leads to a G-isomorphic quadric and gives no new G-Mori
fibre space. Remark 6.16 and Lemma 6.18 finds all curves of degree 8
satisfying the assumptions of Lemma 6.13. On the other hand, we do
not know the existence of such a curve of degree 10.

Finally, we show that the only curves in R or R′ which can be non-
canonical centers are C4 and C ′

4. The Sarkisov links centered at them
have been studied in [2, Section 5.9] and [35].

Lemma 6.15 ([35, Lemma 7]). Let H be a general hyperplane section
on X. Then the linear system |2H−C4| gives rise to a G-equivariantly
birational involution φ : X 99K X. There exists a G-equivariant com-
mutative diagram

X̃
φ̃ //

π

��

X̃

π

��
X φ

// X

where π : X̃ → X is the blowup of C4, R̃ is the strict transform on X̃ of

the surface R, and φ̃ ∈ Aut(X̃) has order 2. Let E be the exceptional

divisor of π. Then φ̃(E) = R̃. Moreover, one has R̃ ≃ E ≃ P1 × P1.

Note that X̃ above is a smooth Fano threefold of Picard rank 2 and
degree 28. More details about X̃ can be found in [34] or [2, Section
5.9].

Remark 6.16. Recall that there is an involution σ ∈ Aut(X) such that
⟨σ,G⟩ ≃ S5. In many cases, G-orbits or G-invariant curves appear in
pairs swapped by σ. For example, σ swaps C4 and C ′

4. By symmetry,
|2H−C ′

4| gives an involution φ′ similar to φ. We construct φ and φ′ in
equations and find that φ(C ′

4) and φ
′(C4) are two smooth irreducible

curves of degree 8. Each curve is cut out by cubics passing through
it. We also find that φ′(φ(C ′

4)) and φ(φ
′(C4)) are irreducible curves of
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degree 16 such that each of them has 12 cusps. Equations of φ, φ′ and
the curves can be found in [37].

Lemma 6.17. Let C be a G-invariant curve of degree at most 17 con-
tained in R or R′ and C ̸= C4, C

′
4. Then each irreducible component

of C is not a center of non-canonical singularities of (X,λMX).

Proof. Without loss of generality, we may assume that C ⊂ R. Sup-
pose that multC(λMX) > 1. Let us seek for a contradiction. We use

the notation of Lemma 6.15. Set H̃ = π∗(H), let MX̃ be the strict

transform on X̃ of the linear system MX , and C̃ the strict transform

on X̃ of the curve C. Then

R̃ ∼ 2H̃ − 3E, H̃ · C̃ ≤ 17, C̃ ̸⊂ E, and multC̃(λMX̃) > 1,

where

λMX̃ ∼Q 3H̃ − rE

for some r ∈ Q⩾0. By Lemma 6.15, there is an involution φ̃ ∈ Aut(X̃)

such that φ̃(R̃) = E and

φ̃∗(H̃) ∼ 2H̃ − E.

In particular, we know that R̃ ≃ P1×P1. Moreover, we have R̃|E = 2∆,
where ∆ is a smooth curve in E of bidegree (1, 1). This implies that
the G-action on E is diagonal.

To obtain a contradiction, we consider the restriction

λMX̃ |R̃ ∼Q (3H̃ − rE)|R̃
and show that the inequality multC̃(λMX̃ |R̃) > 1 contradicts

H̃ · C̃ ≤ 17,

since C̃ ̸= ∆. To do this, we restrict φ̃(MX̃) to E.

Namely, setM′
X̃
= φ̃(MX̃) and C̃

′ = φ̃(C̃). Then (2H̃−E)·C̃ ′ ≤ 17,

C̃ ′ ̸= ∆ and

multC̃′(λM′
X̃
) > 1,

where

λM′
X̃
∼Q 3(2H̃ − E)− rR̃.

Let f be a fibre of the natural projection π|E : E → C4, and s a section
of this projection such that s2 = 0. Then

C̃ ′ ∼ as+ bf



QUADRIC THREEFOLDS 35

for some non-negative integers a and b. We have

(6.11) (as+ bf) · (2H̃ − E)|E = (2H̃ − E) · C̃ ′ ≤ 17.

We compute 2H̃|E ∼ 8f and E|E = s − 5f , so (2H̃ − E)|E ∼ s + 3f .
Plugging this into (6.11), we get

3a+ b ≤ 17.

Since C̃ ′ ̸= ∆, we know that a ̸= b. A computation of G-invariant
forms on E then implies that

(a, b) ∈ {(0, 12), (1, 11), (1, 13), (2, 10)}.(6.12)

Now, we use the inequality m := multC̃′(λM′
X̃
) > 1. It gives

λM′
X̃
|E = mC̃ ′ + Ω,

where Ω is a Q-linear system on E. On the other hand, we have

λM′
X̃
|E ∼Q 3(s+ 3f)− 2r(s+ f) = (3− 2r)s+ (9− 2r)f,

and thus m(as+ bf) + Ω ∼Q (3− 2r)s+ (9− 2r)f . This yields

b < bm ⩽ s · (m(as+ bf)+Ω) = s · ((3−2r)s+(9−2r)f) = 9−2r ⩽ 9,

which contradicts (6.12). This completes the proof. □

Using the geometry of X̃, we can show that C8 and C ′
8 described in

Remark 6.16 are the only G-invariant rational curves of degree 8 in X.

Lemma 6.18. Let C be a G-invariant curve of degree 4 in X. Then
C = C4 or C ′

4. Let C be a G-invariant rational curve of degree 8 in X.
Then C = C8 or C ′

8, where C8 = φ(C ′
4) and C

′
8 = φ′(C4).

Proof. By Lemma 6.9/(1), any G-invariant curve C of degree 4 is con-
tained in R or R′. Without loss of generalities, assume C ⊂ R. The
first assertion then follows from the proof of Lemma 6.17. In particular,
no solution in (6.12) gives 3a + b = 4. To show the second assertion,
recall that any G-invariant curve of degree 8 is irreducible since 8 is
not a multiple of the index of any strict subgroup of G. By the proof
of Lemma 6.9/(1), we know that C contains an orbit of length 12.
Assume that Σ12 ⊂ C. Under the same notation as in the proof of

Lemma 6.17, let C̃ be the strict transform of C in X̃. We have

C̃ · (2H̃ − E) = 2 · 8− 12 = 4.

It follows that φ(C) is a curve of degree 4 in R′, which is necessarily
C ′

4. Then C = φ(C ′
4) since φ is an involution. Similarly, we can show

that C = φ′(C4) when Σ′
12 ∈ C, □
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Lemma 6.19. Let C be a singular G-invariant curve of degree 16 that
is not contained in R∪R′. Then C = φ′(C8) or C = φ(C ′

8). Moreover,
C is not a non-canonical center of the log pair (X,λMX).

Proof. First, we show that C is singular along an orbit of length 12.
Assume it is not. Then |Sing(C)| ≥ 20. Let S be the unique smooth
K3 surface in P containing C as in Lemma 6.9, and HS a general hy-
perplane section on S. We have C2 ≤ 42 by the Hodge index theorem,
and thus the arithmetic genus pa(C) ≤ 22. Since |Sing(C)| ≥ 20, the
geometric genus g(C) ≤ 2. By [17, Lemma 5.1.5.], A5 does not act on
curves of geometric genus 1 or 2. It follows that

g(C) = 0, |Sing(C)| = pa(C) = 20, C2 = 38.

Then (C − 2HS)
2 = −2. This implies that |C − 2HS| is not empty and

has a fixed component of degree≤ 4, which is impossible by Lemma 6.9.
Thus, C is singular along an orbit of length 12. Assume that C is
singular at points in Σ12. Under the same notation as in the proof of
Lemma 6.18, we have that

deg(φ(C)) = C̃ ·(2H̃−E) = 2·16−2·12−(a·12+b·20+c·30+d·60) ≥ 0

for a, b, c, d ∈ Z≥0. Then the only possibility is deg(φ(C)) = 8. It
follows from Lemma 6.18 that φ(C) = C8 or C ′

8, i.e., C = φ(C8) or
φ(C ′

8). The first is impossible since φ(C8) = C ′
4 has degree 4. Thus,

C = φ(C ′
8). Similarly, if C is singular at points in Σ′

12, we can show
that C = φ′(C8).

Then we can find equations of C. We listed them in [37]. Using
equations, we check that |Sing(C)| = 12 and |5HS − C| contains no
base curve other than C. Then 5HS − C is nef. Since C8 and C ′

8 are
rational curves, we know g(C) = 0. It follows that pa(C) = 12 and
C2 = 22.

Now assume that C is a non-canonical center of (X,λMX). Similarly
as in the proof of Lemma 6.12, we know that 3HS−C is effective. But
computing

(5HS − C) · (3HS − C) = −16 < 0,

we obtain a contradiction to the nefness of 5HS − C. This completes
the proof.

□

6.3. Orbits of points. Now we study when all non-canonical centers
are points. First, we show that points in the invariant curves of degree
4 or 8 cannot be non-canonical centers in this case.



QUADRIC THREEFOLDS 37

Lemma 6.20. Suppose that C4 is not a non-canonical center of the log
pair (X,λMX), then every point in C4 is not a non-canonical center.
The same holds for C ′

4.

Proof. Let a = multC4(λMX). By assumption, we have a ≤ 1. We

retain the notation in Lemma 6.17: let π : X̃ → X be the blowup of
C4, and E its exceptional divisor, so that E = P1 × P1 → C4. Let
λMX̃ be the linear system satisfying

KX̃ + λMX̃ + (a− 1)E ∼ φ∗(KX + λMX).

Assume that a point on C4 is a non-canonical center of (X,λMX).
Then there exists a center Z of non-canonical singularities of the pair

(X̃, λMX̃ + (a− 1)E)

such that Z ⊂ E. It follows that Z is a center of non-canonical singu-

larities of (X̃, λMX̃ + E). By inversion of adjunction, Z is a non-log-
canonical center of (E, λMX̃ |E). Note that λMX̃ |E is not mobile, and
consider a divisor D ∼Q λMX̃ |E. Let f be a general fibre of E → C4

and s a section such that s2 = 0. We compute

D ∼Q as+ (12− 5a)f ∈ Pic(E)⊗Q.

Since a ≤ 1, we know that (E,D) is log-canonical at a general point
of any curve which is not a fibre. On the other hand, if any fibre is a
non-log-canonical center of (E,D), then at least 12 fibres are non-log-
canonical centers, since the smallest orbit of the A5-action on C = P1

has length 12. This is impossible because 12− 5a ≤ 12. It follows that
(E,D) is not log-canonical at finitely many points. Let p be one of
these points and L a fibre containing p. Write

D ∼Q bL+∆, b ≤ 1

for some divisor ∆ not supported along L. Then (E,L + ∆) is also
not log-canonical at p. By inversion of adjunction, (L,∆|L) is not log-
canonical at p, which contradicts

(∆ · L)p = a ≤ 1.

□

Lemma 6.21. Suppose that the curves C4, C
′
4, C8 and C ′

8 are not cen-
ters of non-canonical singularities of (X,λMX), then none of the points
in C4 ∪ C ′

4 ∪ C8 ∪ C ′
8 is a non-canonical center.
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Proof. By Lemma 6.20, it suffices to show that (X,λMX) is canonical
at any point in C8 under the assumption. Let Σ be the intersection of
C8 with the non-log-canonical locus of (X,λMX). Similarly as before,
we may assume that Σ is 0-dimensional. Let M1,M2 be two general
members in MX , and write

λ2(M1 ·M2) = mC8 +∆

for some divisor ∆ not supported along C8 and m ≥ 0. Intersecting
with a general hyperplane H, we obtain

18 = λ2(M1 ·M2 ·H) ≥ m deg(C8) = 8m ⇒ m ≤ 9/4.

Recall that C8 is cut out by cubics, see Remark 6.16. Let S be a general
cubic on X passing through C8. Since C8 is smooth, by Theorem 2.2,
we have

multΣ
(
λ2(M1 ·M2)

)
> 4 ⇒ multΣ(∆) ≥ 4−m.

Observe that

54 = λ2(M1 ·M2 · S) = 24m+∆ · S ≥ 24m+ |Σ|(4−m).(6.13)

Since 4 − m > 0, the inequality (6.13) implies that |Σ| < 20. By
Lemma 6.3, Σ consists of orbits of length 5 or 12. Orbits of length 12
are in C4 ∪ C ′

4, and thus are excluded by Lemma 6.20. On the other
hand, none of orbits of length 5 is in C8. It follows that Σ = ∅. □

Proposition 6.22. Suppose that the log pair (X,λMX) is canonical
away from finitely many points. Then it is canonical away from Σ5∪Σ′

5.

Proof. Let Σ be the non-canonical locus of (X,λMX). By Remark 2.5,
(X, 3

2
λMX) is not log-canonical at points in Σ. Let ε be a positive

rational number such that

Σ ⊂ Ω, Ω := Nklt(X, (
3

2
− ε)λMX).

Assume that Ω contains some curve C. Let

m = multC((
3

2
− ε)λMX).

Observe that

1 < m <
3

2
⇒ m2

m− 1
>

9

2
.

Let M1,M2 ∈ MX be two general elements, and H a general hyper-
plane on X. By Theorem 2.4, we know that

9

2
deg(C) <

m2

m− 1
deg(C) ≤ (

3

2
− ε)2λ2(H ·M1 ·M2) <

9

4
18 =

81

2
,
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which implies that deg(C) ≤ 8. It follows that C can only be one of
C4, C

′
4, C8 and C ′

8. By Lemma 6.20 and Lemma 6.21, Σ is disjoint
from these curves. Thus, the 0-dimensional component Ω0 of Ω is non-
empty. Applying Nadel vanishing in the same way as in the proof of
Proposition 4.13, we obtain that |Σ| ≤ |Ω0| < 14. Since all orbits of
length 12 are contained in C4 or C ′

4, the proof is complete. □

7. The nonstandard A5-action on the cubic threefold

Now, we focus on the other model of X: a cubic threefold Y with
5A2-singularities, carrying the same G-action generated by (6.2). Let
f1 and f2 be the cubics defined in (6.3). Then Y is given by

(7.1) Y = {(8− 3ζ6)f1 + 7f2 = 0} ⊂ P4

with the same G-action given by (6.2). The aim of this section is to
prove the following result.

Proposition 7.1. Let MY be a non-empty mobile G-invariant linear
system on Y , and µ ∈ Q such that µMY ∼Q −KY . Then the log pair
(Y, µMY ) is canonical away from Sing(Y ).

Proof. This follows from Propositions 7.11 and 7.12. □

First, we classify small orbits and curves of degrees at most 11. We
show that all such curves are reducible. In the second subsection, we
study singularities of pairs (Y, µMY ) as above along invariant curves,
and in the third subsection, we consider 0-dimensional centers.

7.1. Small G-orbits and G-invariant curves of low degrees.

Lemma 7.2. A G-orbit of points in Y with length ≤ 20 is one of the
following:

Σ5 = the orbit of [1 : ζ6 − 1 : −ζ6 : ζ6 − 1 : 1],

Σ12 = the orbit of [ζ35 : ζ25 : 0 : ζ5 : 1],

Σ′
12 = the orbit of [ζ45 : ζ5 : 0 : ζ35 : 1],

Σ15 = the orbit of [1 : 0 : 0 : 0 : 0],

Σ20 = the orbit of [(3ζ6 − 8) : (−8ζ6 + 5) : (5ζ6 + 3) : 7(ζ6 − 1) : 7].

where the length of each orbit is indicated by the subscript. A G-orbit
of points in Y with length 30 is the orbit of a general point in one of
the following two curves:

a cuspidal cubic curve: {x1 − x4 = x2 − x3 = 0} ∩ Y,
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or
a line: {x1 + x4 = x2 + x3 = x5 = 0} ⊂ Y.

Moreover, every G-orbit of points in Y of length different from 60 is
one of the orbits described above.

Observe that Σ5 is the singular locus of Y . We now describe the
G-invariant reducible curves of degrees lower than 12 on Y . Later, we
show that they are the only G-invariant curves of such degrees.

Lemma 7.3. Let C be a G-invariant reducible curve of degree at most
11. Then C is the union of curves in one of the following orbits:

• one of the following two orbits of 6 lines

L6 = the orbit of {x1 + x4 + (−ζ35 − ζ25 )x5 = x2 + (ζ35 + ζ25 )x4+

+ (ζ35 + ζ25 )x5 = x3 − (ζ35 + ζ25 )x4 + x5 = 0},

L′
6 = the orbit of {x2 − (ζ35 + ζ25 + 1)x4 − (ζ35 + ζ25 + 1)x5 = x1+

+ x4 + (ζ35 + ζ25 + 1)x5 = x3 + (ζ35 + ζ25 + 1)x4 + x5 = 0},
• one of the following two orbits of 10 lines

L10 = the orbit of {x1 + x3 + x5 = (5ζ3 − 3)x4 + 7x5 =

= 7x1 + (5ζ3 − 3)x2 = 0},

L′
10 = the orbit of {x1 + x3 + x5 = −ζ3x4 + x5 = x1 − ζ3x2 = 0}.

Moreover, L′
10 consists of ten lines passing through pairs of 5 singular

points of Y . The lines in L are pairwise disjoint for L = L6,L′
6 or L10.

Proof. The proof is similar to that of Lemma 4.5. □

The rest of this subsection is devoted to proving the following result.

Proposition 7.4. Let C be a G-invariant curve in Y of degree at most
11. Then C is the union of all lines in one of the orbits L6, L′

6, L10,
or L′

10 given in Lemma 7.3.

Proof. This follows from Lemmas 7.7, 7.8, 7.9, and 7.10. □

First we notice that there is a unique G-invariant surface in the linear
system |OY (2)| and |OY (3)|. We denote them by Q and R respectively.
We have

Σ12,Σ
′
12 ∈ Q ∩R, Σ5 ∈ R \Q, Σ20 ∈ Q \R.(7.2)

By computation, we find that Q is a nodal K3 surface.
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Lemma 7.5. The singular locus of Q is Σ5 and each singular point is
an ordinary double point. The singular locus of R is Σ12∪Σ′

12 and each
singular point is an ordinary double point.

Lemma 7.6. Let C ⊂ Y be an irreducible G-invariant curve of degree
at most 11 which is not a union of ten lines. Then Σ5 ̸⊂ C.

Proof. Assume that Σ5 ⊂ C. Let Ỹ be the blowup of Y in Σ5, let E

be the exceptional divisor, and C̃ be the strict transform of C. We

denote by H the pullback to Ỹ of a general hyperplane section on Y .
The base locus of the linear system |4H − 3E| is the strict transform
of the union of the ten lines that pass through pairs of points in Σ5.

By assumption, the curve C̃ is not in the base locus of |4H − 3E|, so
we have (4H − 3E) · C̃ ≥ 0. On the other hand,

0 ≤ (4H − 3E) · C̃ = 4d− 15E1 · C̃ ≤ 44− 15E1 · C̃(7.3)

where E1 is an irreducible component of E. The divisor E1 is a quadric
cone and is invariant under an A4-action. Then A4 acts faithfully on
the base conic of the cone. The orbit of a smooth point in the cone is at

least of length 4. It follows that if C̃ does not pass through the vertex

P of E1, we have E1 ·C̃ ≥ 4, contradicting (7.3). If C̃ passes through P ,
it is singular at P , because otherwise A4 does not act faithfully on the

tangent space of C̃ at P . Hence E1 · C̃ ≥ 2 · 2 = 4, again contradicting
(7.3). □

Lemma 7.7. Let C ⊂ Y be an irreducible G-invariant curve of degree
d ≤ 11. Then d ∈ {6, 8, 10}. Moreover, if d = 6 (resp. d = 8), then
C ⊂ R (resp. C ⊂ Q).

Proof. By Lemma 7.6, Σ5 ̸⊂ C. If C ̸⊂ Q, it follows from possible
lengths of orbits that

Q · C = 2d = 12a+ 20b+ 30c, for a, b, c ∈ Z≥0.

Since d ≤ 11, we find that

(d, a, b, c) ∈ {(6, 1, 0, 0), (10, 0, 1, 0)}.
Similarly, if C ̸⊂ R, we have

R · C = 3d = 12a+ 20b+ 30c, for a, b, c ∈ Z≥0.

Recall that R is singular at the orbits of length 12 by Lemma 7.5. Then
a = 0 or a ≥ 2. The only possibilities are

(d, a, b, c) ∈ {(8, 2, 0, 0), (10, 0, 0, 1)}.
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Therefore, when d /∈ {6, 8, 10}, we know that C ⊂ Q ∩ R. But Q ∩ R
is an irreducible curve of degree 18. □

Next, we show that there is also no irreducible G-invariant curve of
degree 6, 8 or 10.

Lemma 7.8. Let C be a G-invariant curve of degree 6 in Y . Then C
is a union of 6 lines in L6 or L′

6 given in Lemma 7.3.

Proof. Assume that C is not a union of 6 lines. By Lemma 7.3, C is
irreducible. Lemma 7.7 shows that C ⊂ R. From (7.2), we know that
Q contains both orbits of length 12. Since C · Q = 12, the curve C
must contain one and only one orbit of length 12 and C is smooth along
this orbit. Assume that C contains Σ12. Recall from Lemma 7.5 that
points in Σ12 are nodes of R. Let f : R̃ → R be the blowup of R at

Σ12, E its exceptional divisor, and C̃ the strict transform of C. Then

C̃ ∼Q f
∗(C)− a

2
E,

for some positive integer a. By Hodge index theorem, we have C2 ≤ 4.
It follows that

2pa(C̃)− 2 = (KR̃ + C̃) · C̃

= (f ∗(H) + f ∗(C)− a

2
E) · C̃

= 6 + C2 − 12a2

2
≤ 10− 6a2.

We deduce that pa(C̃) ≤ 6 − 3a2 ≤ 3. Since there is no G-orbits of

length ≤ 3, the geometric genus g(C̃) = pa(C̃), i.e., both C̃ and C are
smooth and g(C) ≤ 3. From [17, Lemma 5.1.5], we know that C is a
smooth rational curve. Then C contains a G-orbit of length 20. On the
other hand, the only G-orbit of length 20 is contained in Q by (7.2).
This contradicts C ·Q = 12. □

Lemma 7.9. There is no G-invariant curve of degree 8 in Y .

Proof. Assume that C is such a curve. It is necessarily irreducible.
Lemma 7.7 shows that C ⊂ Q. Recall from Lemma 7.5 that Q is a
K3 surface singular at Σ5. Hence, by [16, Proposition 6.7.3], we have
PicG(Q) ∼= Z. Let H be a general hyperplane section on Q. Since
H2 = 6 is not a square, we know that H generates PicG(Q). On the
other hand, Lemma 7.6 implies that C is contained in the smooth locus
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of Q, and thus is a Cartier divisor. It follows that C = nH, for some
n ∈ Z. Then 8 = C ·H = 6n, which is impossible. □

Lemma 7.10. Let C be a G-invariant curve of degree 10 in Y . Then
C is a union of 10 lines in L10 or L′

10 given in Lemma 7.3.

Proof. Assume that C is not a union of 10 lines. By Lemma 7.3, C
is irreducible. Consider its normalization f : C ′ → C. Since C is not
contained in R∩Q, the proof of Lemma 7.7 shows that C cannot have
an orbit of length 12. By [17, Lemma 5.1.5], we deduce that the genus
of C ′ satisfies

g(C ′) ≥ 6.

Consider the divisor D = f ∗(OC(3)) on C
′, and the restriction map

H0(Y,OY (3)) −→ H0 (C,OC(3)) ,

We want to estimate h0(D) = h0(C ′,OC′(D)). If D is non-special, then
by Riemann–Roch:

h0(D) = degD − g + 1 = 30− g + 1 ≤ 25.

If D is special, then by the Clifford theorem:

h0(D) ≤ degD

2
+ 1 = 16.

Consider the map g : H0(Y,OY (3)) → H0 (C ′,OC′(D)) given as the
composition of

H0(Y,OY (3))
|C−→ H0 (C,OC(3))

f∗−→ H0 (C ′,OC′(D)) .

Since h0(Y,OY (3)) = 34, we find that the kernel of this map has di-
mension at least

34− h0(D) ≥ 9.

This kernel consists of cubic hypersurfaces in Y that contain C.
Arguing in the same way as in Lemma 7.9, we see that C cannot

be contained in Q. Then C · Q = 20, so that C must contain Σ20.
Let V15 and V20 be the subspaces of H0(Y,OY (3)) consisting of cubics
containing the orbit Σ15 and Σ20 respectively. If Σ15 ⊂ C, then kerφ ⊂
V15 ∩ V20. But we compute that dim(V15 ∩ V20) = 5 < 9. Hence, the
curve C cannot contain Σ15.

Since R · C = 30, the curve C must contain an orbit of length 30
lying on R. Let Σ30 be such an orbit, and V30 the space of cubics
containing Σ30. We have explicitly described these orbits in Lemma
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7.2. In particular, Σ30 is either the orbit of one of the following 4
points

[−ζ4 − 2 : 1 : 1 : 1 : 1], [ζ4 − 2 : 1 : 1 : 1 : 1],

[−2ζ35 − 2ζ25 : 1 : ζ35 + ζ25 − 1 : ζ35 + ζ25 − 1 : 1],

[2ζ35 + 2ζ25 + 2 : 1 : −ζ35 − ζ25 − 2 : −ζ35 − ζ25 − 2 : 1],

or the orbit of a general point in the line

{x1 + x4 = x2 + x3 = x5 = 0} ⊂ Y.

A linear algebra computation then shows that dim(V20 ∩ V30) < 9 for
any such orbit Σ30. Therefore we obtain a contradiction. □

7.2. Invariant curves.

Proposition 7.11. Let C be a G-invariant curve in Y . Then each
irreducible component of C is not a non-canonical center of (Y, µMY ).

Proof. Assume that irreducible components of C are non-canonical cen-
ters of (Y, µMY ). Proposition 7.4 shows that C is the union of all
curves in one of the following orbits given in Lemma 7.3

L6, L′
6, L10, or L′

10.

Assume that C is one of the unions of six lines in L6 or L′
6 which

are pairwise disjoint. Let Ỹ → Y be the blowup of C in Y , E the
exceptional divisor, and H the pullback of a general hyperplane section
on Y . One can check that C is cut out by cubics, which implies that
|3H − E| is nef. By our assumption that irreducible components of
C are non-canonical centers of (Y, µMY ), we know that |2H −mE| is
mobile for some m > 1, and thus |2H −E| is mobile as well. It follows
that the divisor (2H − E)2 is effective. On the other hand, we have
(3H − E) · (2H − E)2 = −6 < 0, which is a contradiction.

If C is the union of 10 lines in L10 which are pairwise disjoint, we
proceed in exactly the same way as C is also cut out by cubics, so
(4H−E) is nef and (4H−E) · (2H−E)2 = −32 < 0. Finally, the case
where C is the union of curves in L′

10, i.e., the union of the ten lines
passing through pairs of points in Σ5, is excluded the same way as in
[14, Proof of Proposition 3.4]. □
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7.3. Orbits of points.

Proposition 7.12. Let P ∈ Y be a point and Σ its G-orbit. If P is a
non-canonical center of (Y, µMY ), then Σ = Σ5.

Proof. Assume that P is a non-canonical center. By Remark 2.5, we
know that P is a non-log-canonical center of (Y, 3

2
µMY ). Let ε be a

positive rational number such that

Σ ⊂ Ω, Ω := Nklt(Y, (
3

2
− ε)µMY ).

Assume that Ω contains a curve C. Let

m = multC((
3

2
− ε)λMX).

Observe that

1 < m <
3

2
⇒ m2

m− 1
>

9

2
.

LetM1,M2 ∈ MX be two general elements andH a general hyperplane
section of Y . Then by Theorem 2.4, we have that

27 ≥ (
3

2
− ε)2µ2(M1 ·M2 ·H) ≥ m2

m− 1
deg(C) >

9

2
deg(C),

which implies that deg(C) < 6. Proposition 7.4 shows that such curves
do not exist. It follows that Ω contains no curve.

Now notice that

KY + (
3

2
− ε)µMY + 2εOY (1) ∼Q OY (1).

Let I be the multiplier ideal sheaf of (3
2
− ε)µMY . By Nadel vanishing

theorem, we have

|Ω| ≤ h0(OY (1)) = 5.

It follows that Ω = Σ = Σ5. □

8. Proof of Theorems 1.1, 1.2 and 1.3

In this section, we explain how the results in Sections 4 to 7 prove
Theorems 1.1 and 1.2, and can be adapted to show Theorem 1.3 about
the nonstandard S5-action. For the standard A5-action, the result
readily follows from [14].

Proof of Theorem 1.1. By [14, Section 3], this follows from Proposi-
tion 4.1 and 5.1. □
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Similarly, in the case of the nonstandard A5-action, Theorem 1.2
follows from Propositions 6.1 and 7.1. We explain this implication in
detail.

8.1. Nonstandard A5-action. We introduce some notation first. Let
X be the quadric given by (6.1), Y the cubic given by (7.1), with the
nonstandard G-action given by (6.2). We denote by Σ5 and Σ′

5 the two
orbits in X of length 5, χ and χ′ the Cremona map associated with
them respectively, and ΣY

5 the orbit of length 5 in Y . Let BirG(X) be
the group of G-equivariantly birational automorphisms of X.

It is well-known (see e.g., [14, Section 3], [16, Theorem 3.3.1] and
[9, 13]) that the Noether–Fano inequalities (cf. Theorem 2.1) imply
that Theorem 1.2 follows from the following result.

Theorem 8.1. Let MX be a non-empty mobile G-invariant linear sys-
tem on X and λ ∈ Q such that λMX ∼Q −KX . Then there exists
γ ∈ BirG(X) such that either (X,λMX) or (Y, µMY ) has canonical
singularities, where MY is the proper transform of MX by χ ◦ γ, and
µMY ∼Q −KY .

First, let us explain why we need the birational automorphism γ in
the theorem above. Recall from Section 6 that (X,λMX) can have
1-dimensional non-canonical centers. Here we show that, up to re-
placing MX by its strict transform under a birational automorphism,
(X,λMX) is canonical away from the orbits of length five.

Proposition 8.2. Let MX be a non-empty mobile G-invariant linear
system. Then there exists γ ∈ BirG(X) such that (X,λ′M′

X) is canon-
ical away from Σ5 ∪ Σ′

5, where M′
X = γ∗(MX), and λ

′ ∈ Q such that
λ′M′

X ∼Q −KX .

Proof. Let λ ∈ Q such that λMX ∼Q −KX . If (X,λMX) is canon-
ical away from Σ5 ∪ Σ′

5, we are done. Assume on the contrary that
there exists a G-irreducible subvariety Z not contained in Σ5∪Σ′

5, and
irreducible components of Z are non-canonical centers of (X,λMX).
Then, by Proposition 6.1, Z is one of the following irreducible curves:

• rational curves C4 and C ′
4 of degree 4 given by (6.5),

• rational curves C8 and C
′
8 of degree 8 described in Remark 6.16,

• a smooth curve C10 of degree 10 and genus 6.

Moreover, it follows from Lemma 6.13 and Lemma 6.15 that there exists
a commutative G-equivariant diagram
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V V ′

X X

χ

φ φ′

δ

where

• φ is the blowup of Z,
• χ is an biregular involution if deg(Z) = 4, and is a composition
of flops if deg(Z) = 8 or 10,

• φ′ is the blowup of a curve Z ′ with the same degree and genus
as Z,

• δ ∈ BirG(X).

Set M′
X = δ∗(MX) and λ′ ∈ Q such that λ′M′

X + KX ∼Q 0. Since
Pic(X) is generated by OX(1), we know that MX is a linear subsystem
of |OX(n)| for n = 3

λ
. Let n′ = 3

λ′
. Then M′

X ⊂ |OX(n
′)|. We claim

that n′ < n. Indeed, let MV be the strict transform of the linear
system MX on V . Note that codimX(Z) = 2 and multZ(λMX) > 1.
We have that

0 ∼Q φ
∗(KX + λMX) ∼Q KV + λMV + aE, for some a > 0.

Pushing forward this class to X via φ ◦ χ, we obtain that

KX + λM′
X + aD ∼Q 0

for some effective divisor D on X. Since KX + λ′M′
X ∼Q 0, it follows

that λ′ > λ, i.e., n′ < n.
To summarize, if a curve is a non-canonical center, then we can find

a G-equivariantly birational automorphism such that the pushforward
M′

X is a subsystem of |OX(n
′)| for n′ strictly smaller than n. Therefore,

by iterating this process, we will obtain a linear system which has
no 1-dimensional non-canonical center, and thus the resulting pair is
canonical away from Σ5 ∪ Σ′

5. □

We recall the following lemma from [1].

Lemma 8.3. Let V be a threefold, K ⊂ Aut(V ) a finite subgroup
fixing a smooth point P ∈ V , MV a non-empty mobile K-invariant
linear system on V , and λ ∈ Q such that P is a non-canonical center
of (V, λMV ) . If K acts on the Zariski tangent space TP (V ) of V at
P via an irreducible representation, then multP (MV ) >

2
λ
.

Corollary 8.4. Assume that (X,λMX) is not canonical at Σ5. Then
multΣ5MX > 2

λ
.
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Proof. The stabilizer of a point P ∈ Σ5 is isomorphic to A4, which acts
on TP (X) faithfully. The only 3-dimensional faithful representation of
A4 is irreducible. Then we apply the previous lemma. □

Lemma 8.5. Let S = P(1, 1, 2), and K a finite group acting faithfully
on S such that |OS(1)| has no K-invariant curves. Then αK(S) ≥ 1

2
.

Proof. Let L be a general element in |OS(1)|. Suppose αK(S) <
1
2
.

Then there exists a K-invariant effective Q-divisor D such that the log
pair (S, 1

2
D) is not log-canonical, and D satisfies

D ∼Q 4L ∼Q −KS, and
1

2
D =

∑
aiCi,

where for each i, we have ai ∈ Z≥0, and Ci ∈ |OS(di)| for some di. First,
we show that ai ≤ 1 for all i. Indeed, we have 2 = deg(1

2
D) = Σaidi.

If aj > 1 for some j, then aj = 2 and dj = 1. Since |OS(1)| contains
no K-invariant curve, there exists g ∈ K such that ajg(Cj) also shows
up in 1

2
D. This contradicts deg(1

2
D) = 2.

Let ε ∈ Q>0 such that (S, 1−ε
2
D) is not log-canonical. Since ai ≤ 1

for all i, we know that Γ = Nklt(S, 1−ε
2
D) does not contain any curve.

Nadel vanishing theorem then implies that Γ contains a single point,

namely the vertex of S. Consider the blowup S̃ → S of the vertex and
let E be the exceptional divisor. We have that

S̃ ∼= F2, KS̃ ∼ f ∗(KS), D̃ = f ∗(D)−mE, L̃ = f ∗(L)− 1

2
E

for some m ∈ Z>0. It follows that

0 ≤ D̃ · L̃ = 2−m, and thus m
1− ε

2
< 1.

Since

f ∗(KS +
1− ε

2
D) ∼Q KS̃ +

1− ε

2
D̃ +m

1− ε

2
E,

we see that (S̃, 1−ε
2
D̃ +m1−ε

2
E) is not log-canonical at some point in

E. Since m1−ε
2
< 1, the pair (S̃, 1−ε

2
D̃+E) is also not log-canonical at

some point in E. By inversion of adjunction, we see that (E, 1−ε
2
D̃|E)

is not log-canonical. Note that D̃|E ∼Q −E|E is a divisor of degree 2m
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on E = P1. It follows that αK(P1) < 1. Recall from [16] that

αK(P1) =



1
2

if K ∼= Cn,

1 if K ∼= Dn,

2 if K ∼= A4,

3 if K ∼= S4,

6 if K ∼= A5.

By our assumption that |OS(1)| has no K-invariant curves, we see that
K is not a cyclic group. Therefore, we obtain a contradiction and this
completes the proof. □

Corollary 8.6. Assume that points of ΣY
5 are centers of non-canonical

singularities of (Y, µMY ). Consider π : Ỹ → Y , the blowup of Y in
ΣY

5 . Let m ∈ Q such that π∗(µMY ) ∼Q µMỸ + mE, where MỸ is

the strict transform of MY to Ỹ , and E is the exceptional divisor of
π. Then m > 1.

Proof. Let P be a point of Σ5, and let F be the component of E that
is mapped to P . Then F ≃ P(1, 1, 2), since P is an A2-singularity.
Observe that

π∗(KY + µMY ) ∼Q KỸ + µMỸ + (m− 1)E.

Recall that P is a non-canonical center of (Y, µMY ). It follows that

(Ỹ , µMỸ + (m − 1)E) is not canonical at some point in F . Hence,

(Ỹ , µMỸ +mE) is not log-canonical at some point in F .

Now assume that m ≤ 1. Then (Ỹ , µMỸ + E) is not log-canonical
at some point in F . It follows from the inversion of adjunction that
(F, µMỸ |F ) is not log-canonical. Note that

µMỸ |F ∼Q −mF |F ∼Q OF (2m).(8.1)

The stabilizer of P is isomorphic to A4, which acts faithfully on F .
Then (8.1) implies that αA4(F ) <

m
2
, which contradicts Lemma 8.5.

Therefore we conclude that m > 1. □

We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. By Proposition 8.2, we may assume that, up
to applying a G-equivariantly birational automorphism of X, the log
pair (X,λMX) is canonical away from Σ5 ∪ Σ′

5. Since Σ5 and Σ′
5 are

exchanged by some element in the normalizer of G in Aut(X), we can
further assume that (X,λMX) is canonical away from Σ5. Now, it
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suffices show that either (X,λMX) is canonical along Σ5, or (Y, µMY )
is canonical along ΣY

5 .
We denote by HX (resp. HY ) a general hyperplane section on X

(resp. Y ). Let n, n′ ∈ Z such that MX ∼Q nHX , and MY ∼Q n′HY .
Note that n = 3

λ
and n′ = 2

µ
. Recall from [14, Section 3] that the

Cremona map χ fits into the G-equivariant commutative diagram:

V
g

~~

ρ // W
f

  
X

χ // Y

where g is the blowup of Σ5, ρ is a small birational map that flops
the proper transforms of 10 conics that contain three points in Σ5,
and f contracts to ΣY

5 the proper transforms of 5 hyperplane sections

of X that pass through four points in Σ′
5. Let H̃X , H̃Y , M̃X , M̃Y

be the strict transforms in V of HX , HY , MX , MY respectively, E
the exceptional divisor of g, and F the strict transform in V of the
exceptional divisor of f . We compute

M̃X = nH̃X−mE = (4n−5m)H̃Y −(3n−4m)F = n′H̃Y −m′F = M̃Y ,

which yields

n′ = 4n− 5m, m′ = 3n− 4m,

for some m,m′ ∈ Q. By Corollary 8.4, if (X,λMX) is not canonical
along Σ5, then λm > 2, i.e., 3m > 2n. On the other hand, if (Y, µMY )
is not canonical at ΣY

5 , then by Corollary 8.6, we have 1 < µm′, i.e.,
2n > 3m. These two cases cannot happen simultaneously. We conclude
that either (X,λMX) is canonical at Σ5, or (Y, µMY ) is canonical at
ΣY

5 . □

8.2. Nonstandard S5-action. Throughout this subsection, G′ = S5.
Using our analysis of the non-standard A5-action, it is not hard to prove
Theorem 1.3. Let X be the same quadric threefold defined by (6.1) and
Y the cubic threefold defined by (7.1). We consider the nonstandard
G′-action on X and Y generated by the nonstandard A5-action (6.2),
and an extra involution

ι : (x) 7→ (x3, x4, x1, x2,−x1 − x2 − x3 − x4 − x5).

We will show that the onlyG′-Mori fibre spaces that areG′-equivariantly
birational to X are X and Y .
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Recall from Propositions 6.6 and 6.22 that the possible non-canonical
centers under the nonstandard A5-action are points in Σ5 and Σ′

5,
curves C4, C

′
4, C8, C

′
8, or some curves of degree 10.

Under the G′-action, the orbits Σ5 and Σ′
5 are still invariant. So, the

cubic Y with 5A2-singularities is still S5-equivariantly birational to X.
Proposition 7.1 clearly also holds for the S5-action. We focus on the
quadric. Any curve of degree 10 becomes irrelevant, since if it is not
S5-invariant, its S5-orbit becomes a curve of degree 20, which exceeds
the bound 18 as in Remark 4.2.
The involution ι ∈ S5 exchanges the curve C4 with C

′
4, and C8 with

C ′
8. We show that C8 and C

′
8 are not non-canonical centers in this case.

Lemma 8.7. The curves C8 and C ′
8 are not centers of non-canonical

singularities of (X,λMX).

Proof. Assume C8 is a non-canonical center. Since MX is G′-invariant,
C ′

8 is also a non-canonical center. Put Z = C8 + C ′
8. Then we have

multZ(λMX) > 1. Let π : X̃ → X be the blowup of X along Z, E
the exceptional divisor, and H the pullback of a general hyperplane

section on X to X̃. Similarly as before, the assumption that C8 and
C ′

8 are non-canonical centers implies that (3H−E)2 is effective. Using
equations, we check that the linear system |OX(5)−C8 −C ′

8| does not
have base curves other than C8 + C ′

8. It follows that (5H − E) is nef.
Let us compute the intersection number (3H − E)2 · (5H − E). We
have

• H3 = 2,
• H2 · E = 0,
• H · E2 = − deg(C8 + C ′

8) = −16,
• E3 = − deg(NC8/X)− deg(NC′

8/X
) = KX · (C8+C ′

8)+ 4 = −44.

Then

(3H − E)2 · (5H − E) = 45H3 − 39H2E + 11HE2 − E3

= 90− 0− 176 + 44

= −42.

This contradicts the fact that (5H − E) is nef. □

On the other hand, C4 + C ′
4 can indeed be a non-canonical center.

We present the Sarkisov link centered at C4 +C ′
4. One can check that

the linear system |OX(3) − (C4 + C ′
4)| gives rise to a rational map
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τ : X 99K P3 fitting into a G′-equivariant commutative diagram

X̃
π

��

ρ

��
X

τ // P3

where π is the blowup along C4 + C ′
4 and the resolution ρ of τ is a

double cover ramified along a singular sextic surface. The involution of
this double cover gives rise to a G′-equivariantly birational involution

δ : X 99K X.

Note that δ naturally commutes with G′ in BirG
′
(X). It follows that

δ /∈ Aut(X) = PSO5(C) since no element in Aut(X) centralizes G′.
Similarly as in Lemma 6.13, we can show that −KX̃ is big and nef, and
that |n(−KX̃)| gives a small birational map for n≫ 0. Namely, δ also
fits into a Sarkisov link as in (6.10).

Proof of Theorem 1.3. Note that the Sarkisov link centered at C4+C ′
4

is again a G′-equivariantly birational selfmap. Thus, Proposition 8.2
and Theorem 8.1 still hold for the G′-action. The argument in the
previous subsection applies and Theorem 1.3 is proved in the same
way. □

References

[1] H. Abban, I. Cheltsov, J. Park, and C. Shramov. Double veronese cones with
28 nodes. L’Enseignement Mathematique, 2024.

[2] C. Araujo, A.-M. Castravet, I. Cheltsov, K. Fujita, A.-S. Kaloghiros,
J. Martinez-Garcia, C. Shramov, H. Süß, and N. Viswanathan. The Calabi
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