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Abstract. We develop an equivariant version of the Pfaffian-
Grassmannian correspondence and apply it to produce examples of
nontrivial twisted equivariant stable birationalities between cubic
threefolds and degree 14 Fano threefolds.

1. Introduction

Over algebraically closed fields, birationality of smooth cubic three-
folds

Y ⊂ P4

and associated Fano threefolds X of degree 14 and Picard rank 1,

X = P9 ∩Gr(2, 6) ⊂ P14,

is well-known classically. Recently, it has been reconsidered from the
perspective of vector bundles and derived categories [Kuz04]. However,
birationality in presence of group actions is widely open.

In this paper, we work over an algebraically closed field k of charac-
teristic zero and focus on equivariant birationalities. Our starting point
is the following beautiful example: There is a distinguished smooth cu-
bic threefold Y , the Klein cubic, with G := Aut(Y ) = PSL2(F11); it is
given by

y21y2 + y22y3 + y23y4 + y24y5 + y25y1 = 0.

There is also a unique smooth Fano threefold X of degree 14 and Pi-
card number 1, admitting a regular, generically free, action of G. The
threefolds X and Y are birational. However, these G-actions are bi-
rationally rigid, and thus not equivariantly birational to each other
[BCDP23, Theorem 4.3]. We complement this result by showing:

Theorem 1.1 (Proposition 4.1). Let Y be the Klein cubic threefold
and X the associated Fano threefold of degree 14, with a generically

Date: September 13, 2024.
1



2 YURI TSCHINKEL AND ZHIJIA ZHANG

free regular action of G = PSL2(F11). Then there is a G-equivariant
birationality

Y × P2 × P(V ) ∼G X × P2 × P(V ),

with trivial G-action on P2, and projectively linear G-action on the
projectivization of an irreducible 6-dimensional representation V of the
central extension G̃ = SL2(F11).

Birational rigidity techniques work well when the group under con-
sideration is large, with large orbits. We are not aware of results such
as [BCDP23, Theorem 4.3] for actions of any other finite groups on
cubic threefolds Y and the associated X.

In this note, we apply the recently developed formalism of equi-
variant Burnside groups [KT22] to exhibit actions failing equivariant
birationality for such pairs. We introduce the notion of twisted equi-
variant stable birationality (in Section 2) and produce examples of
equivariantly nonbirational but twisted equivariantly stably birational
varieties, for actions of finite groups; this relies on vector bundle tech-
niques, and in particular, the no-name lemma, which is ubiquitous in
equivariant birational geometry. For example, we prove in Section 5:

Theorem 1.2. There exist smooth cubic threefolds Y , with associated
birational Fano threefolds X of degree 14, such that

• Y and X carry a generically free regular action of G = K4, the
Klein four-group,

• the G-actions are not equivariantly birational,
• the G-actions are twisted equivariantly stably birational.

The proofs proceed via an equivariant version of the classically known
Pfaffian-Grassmannian construction, recalled in Section 3. We classify
automorphisms of smooth cubic threefolds admitting an equivariant
Pfaffian realization, in Proposition 3.7. In Section 4, we explain our
approach in the case of G = PSL2(F11); we show that the recently
introduced Burnside invariants do not distinguish the actions on Y
and X. In Section 5, we turn to G = C3 ⋊D4 and its subgroup K4. In
this case, birational rigidity techniques fail, but the Burnside invariants
show nonbirationality of the actions. In Sections 6 and 7, we consider
actions of dihedral groups and of the symmetric group S5, on singular
Y and X.

Acknowledgments: We are grateful to Brendan Hassett for his inter-
est, numerous suggestions, and encouragement. Comments by Chris-
tian Böhning, Hans-Christian von Bothmer, and Andrew Kresch were
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2. Equivariant birational geometry

Birationality and stable birationality. We consider G-varieties,
i.e., projective varieties X with a regular, generically free action of
a linear algebraic group G; in most of our applications, G is a finite
group. Equivariant birationality of G-varieties Y,X is denoted by

Y ∼G X.

Equivariant stable birationality means that

Y × Pm ∼G X × Pm,

for somem, with trivial action on the second factor. Examples of equiv-
ariantly nonbirational but stably birational actions are sought after, see
[Kol22, Section 4], and produced in [HT23], [BGvBT23a], [BGvBT23b].

These notions should be viewed as analogous to birationality and
stable birationality of varieties over nonclosed fields.

Twisted equivariant stable birationality. One important distinc-
tion between equivariant geometry and geometry over nonclosed fields
is that there is only one projective space of a given dimension, but
possibly several, nonbirational P(V ) for a (projectively) linear action
of a finite group, see [TYZ23]. This leads us to the notion of twisted
equivariant stable birationality, when

Y ×
∏
j

P(Vj) ∼G X ×
∏
j

P(Vj),

where Vj are linear representations of extensions of G such that G
acts (projectively) linearly on P(Vj), for all j. This does not preclude
equivariant stable birationality of Y and X, a priori. See, e.g., [HT22,
Section 2] for a discussion of (projectively) linear actions, linearizability,
and stable linearizability.

Over nonclosed fields, this notion is analogous to birationality after
multiplication with Brauer-Severi varieties.

No-name lemma. Let E → X be a G-vector bundle of rank m, with
a generically free G-action on X and E . Then

E ∼G X × Pm,
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with trivial action on Pm, see, e.g., [CGR06, Section 4.3]. In particular,
for any G-representation V of dimension m, one has

X × V ∼G X × Pm,

with trivial action on Pm. This also implies that all faithful linear
actions of a finite group G on projective spaces are stably birational.
For projectively linear actions of G arising from faithful representations
V,W of a central extension G̃ of G, with the same central character,
the no-name lemma applied to the extension

1 → Gm → G′ → G→ 1,

(where G′ contains G̃) shows that

(2.1) P(W )× Pm ∼G P(W ⊕ V ), m = dim(V ),

with trivial action on Pm. The no-name lemma substantially simplifies
the birational geometry of equivariant vector bundles; we will apply it
in Section 3.

Equivariant Burnside groups. This formalism produces a homo-
morphism from the free abelian group on equivariant birational types,
i.e., equivariant birationality classes of n-dimensional varieties, to

Burnn(G),

a group defined by generators

s = (H,Z ýk(F ), β),

subject to conjugacy and blowup relations [KT22]. The class of a G-
action on a variety is computed on a standard model, see [HKT21,
Section 7.2]. On such a model X, all stabilizers are abelian, and the
class

[X ý G] :=
∑
H,F

(H,Z ýk(F ), β) ∈ Burnn(G)

is a sum over all (conjugacy classes of) abelian subgroups H ⊆ G,
and strata F ⊆ X, of dimension d ≤ n, with generic stabilizer H
and residual action of Z ⊆ ZG(H)/H; here β = (b1, . . . , bn−d) is the
collection of weights of H in the normal bundle to F .

One of the relations in Burnn(G) states that the symbol s vanishes
if there exists a nonempty I ⊆ [1, . . . , n− d] such that

∑
i∈I bi = 0.

There is a subgroup

Burninc
n (G) ⊂ Burnn(G)
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freely generated by incompressible symbols, see, e.g., [TYZ23, Section
3.6]. In many situations, we can distinguish G-actions already via
projection of [X ý G] to this subgroup. We record:

Example 2.1. Let Y ⊂ P4 be a cubic threefold with the action of
G = K4 via (3.7). Note that one of the generating involutions fixes a
cubic surface S ⊂ Y , and the fixed locus of the residual involution on
S is a cubic curve C ⊂ S.

Assume that C = Y G is smooth. Then the symbol

(C2, C2 ýk(S), (1))

is incompressible, and the G-action is not linearizable, see [CTZ24,
Proposition 2.6].

Such a symbol also arises from a K4-action on a 4-nodal cubic three-
fold [CTZ24, Example 5.2]; or from a C4-action in [CTZ24, Example
2.7].

Example 2.2. Let Y ⊂ P4 be a singular cubic threefold given by

y1y2y3 + f3(y3, y4, y5) = 0,

where f3 is a cubic form. It carries the action of the dihedral group
G := D2n of order 4n ≥ 8, via

y1 ↔ y2, (y1, y2, y3, y4, y5) 7→ (ζy1, ζ
−1y2, y3, y4, y5),

where ζ is a primitive root of unity of order 2n.
Then G fixes a plane cubic curve C ⊂ P2

y3,y4,y5
given by f3 = 0.

Assume that C is smooth. To reach a standard model, one has to blow
up C. Computing the class [Y ý D2n] on such a model, we find the
incompressible symbol

(C2,Dn ýk(C)(t), (1)), n ≥ 2,(2.2)

where C is a genus 1 curve, see [CMTZ24, Proposition 5.17]. Choosing
roots of unity ζ, ζ ′ such that ζ ̸= ±ζ ′, we obtain equivariantly nonbi-
rational, nonlinearizable G-actions on the rational cubic threefold Y .

3. Dualities

Pfaffian-Grassmannian correspondence. We follow the presenta-
tion in [Kuz04, Section 2], which builds on classical constructions, see,
e.g., [Put82], [IM00]. Let A and V be vector spaces over k of dimension
5, respectively, 6. Let

f : A→ ∧2(V ∨)
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be an injective linear map, called A-net of skew forms on V . It is called
regular, if rk(f(a)) ≥ 4, for all nonzero a ∈ A.

We consider the following varieties, which are smooth for generic f :

Yf = P(f(A)) ∩Gr(2, V )∨, a cubic threefold,

Xf = P(f(A)⊥) ∩Gr(2, V ), a degree 14 Fano threefold,

where Gr(2, V )∨ ⊂ ∧2(V ∨) is the projective dual of Gr(2, V ), given by
the vanishing of the Pfaffian cubic form Pf ∈ Sym3(∧2(V ∨)). Note that
Gr(2, V )∨ parametrizes skew forms on V of rank at most four. Let Uf
be the restriction of the tautological rank two bundle on Gr(2, V ) to
Xf . For a regular f , there is a natural rank two theta-bundle Ef over
Yf , see [Kuz04, Section 2] and [IM00, Theorem 2.2]; the dual bundle E∨

f

is the rank two subbundle of the rank six trivial bundle Yf × V given
by

E∨
f = {(y, v) ∈ Yf × V | v ∈ ker(y)}.

The injective classifying morphism

κ : Yf → Gr(2, V ), y 7→ ker(y)

induces an embedding of Yf in Gr(2, V ). Under this embedding, E∨
f is

naturally identified with the restriction of the tautological bundle from
Gr(2, V ) to Yf . Furthermore,

(3.1) Sing(Xf ) = Sing(Yf ) = Xf ∩ Yf ⊂ Gr(2, V ).

By [Kuz04, Theorem 2.18], for a regular f , we have a diagram

(3.2)

E∨
f Uf

Yf V Xf

ψ

θ

ϕ

where the morphisms ψ, ϕ are induced by the natural projection from
the tautological bundle over Gr(2, V ) to V . The images of ψ and ϕ can
be described as follows

ψ(E∨
f ) = {v ∈ V | v ∈ ker(f(a)) for some nonzero a ∈ A},

ϕ(Uf ) = {v ∈ V | v ∈ ℓ for some ℓ ∈ Xf ⊂ Gr(2, V )}.

Linear algebra shows that ψ(E∨
f ) = ϕ(Uf ), see e.g., [Kuz04, Proposition

2.11, 2.15], [Put82, Theorem B]. In fact, the common image of ψ and
ϕ is a quartic hypersurface

Qf ⊂ V,
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singular along the affine cone C̃f over a curve Cf ⊂ P(Qf ) ⊂ P(V ).

Both ψ and ϕ are isomorphisms on the complement Qf \ C̃f . The
composition θ := ϕ−1 ◦ ψ is then a birational map between vector
bundles. After projectivization, θ induces a birational map between
P1-bundles

P(E∨
f ) 99K P(Uf ),

which is a flop in a ruled surface [Kuz04, Theorem 2.17].

Remark 3.1. In the literature, the existence of the diagram (3.2) and
the birationality of θ are proved for the projectivizations P(E∨

f ),P(Uf )
and P(V ). However, the underlying linear algebra proof applies to the
vector bundles verbatim. To study the equivariant geometry of this
construction, we use the diagram of vector bundles (3.2).

As explained in [Kuz04, Remark 2.19], fixing a hyperplane Π ⊂ P(V ),
there are induced birational maps

(3.3) ϱΠ : Yf
∼
99K Π ∩ P(Qf )

∼
L99 Xf .

Equivariant Pfaffian-Grassmannians. To arrive at an action of a
finite group G on Y and X, we start with a faithful 6-dimensional
G̃-representation V of a central extension

1 → Gm → G̃→ G→ 1

which induces a generically free action of G on P(V ), i.e., the central
Gm is acting trivially on P(V ). Let A be a 5-dimensional vector space
and

f : A→ ∧2(V ∨)(3.4)

a regular A-net such that

f(A) ⊂ ∧2(V ∨)

is a 5-dimensional G̃-invariant subspace. Assume that the induced G-
actions on P(f(A)) and on P(f(A)⊥) are also generically free. Then

(3.5) Yf := Gr(2, V )∨ ∩ P(f(A)), Xf := Gr(2, V ) ∩ P(f(A)⊥),

carry G-actions, which are again generically free. The G̃-actions natu-
rally lift to the vector bundles E∨

f and Uf .
We refer to this construction as equivariant Pfaffian-Grassmannian

correspondence. A generically free G-action on a smooth cubic three-
fold Y is called equivariantly Pfaffian if it arises from an equivariant
Pfaffian-Grassmannian correspondence.
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Remark 3.2. Recall that every smooth cubic threefold over C admits
a Pfaffian representation [AR96], [MT01]; in fact, this holds also for
singular cubics [Com20]. By [Bea00, Theorem 8.2], a smooth cubic
threefold Y over a nonclosed field k is Pfaffian if and only if there is
an arithmetically Cohen-Macaulay curve C ⊂ Y , not contained in a
hyperplane, with KC = OC , i.e., an elliptic normal quintic, defined
over k.

In the equivariant context, this criterion fails: the presence of a G-
stable elliptic quintic C on Y implies equivariant birationality with the
correspondingX, see, e.g., [IM00, Theorem 1.1]. However, in Section 5,
we produce examples of equivariantly Pfaffian actions on smooth Y and
X, which are not equivariantly birational.

Twisted equivariant stable birationality. Given an equivariant
Pfaffian-Grassmannian correspondence, the diagram (3.2) constructed
from a regular A-net (3.4) is G̃-equivariant. In particular, the corre-
sponding birational maps ψ, ϕ and θ in (3.2) are G̃-equivariant since
their constructions are canonical. We have an equivariant birationality

E∨
f ∼G̃ Uf .

However, the no-name lemma does not apply directly to this situation,
since the G̃-action has a nontrivial generic stabilizer on the bases Yf
and Xf . Therefore, we use a variant: letW be a faithful representation

of G̃, inducing a generically free G-action on P(W ), with the central Gm

acting via scalars. E.g., we could put W = V . Consider the diagram

E∨
f ×W

��

∼ // Uf ×W

��
Yf ×W Xf ×W

The horizontal map is a G̃-equivariant birational isomorphism. The
vertical maps are G̃-equivariant rank two vector bundles, and the action
of G̃ on the respective bases is generically free. By the no-name lemma,
we have

Yf × A2 ×W ∼G̃ Xf × A2 ×W,

with trivial G̃-action on the A2-factors. The projections to the respec-
tive bases are equivariant under the action of Gm = ker(G̃→ G). This
implies G-equivariant birationality of the quotients

(Yf × A2 ×W )/Gm ∼G (Xf × A2 ×W )/Gm,



STABLE BIRATIONALITIES 9

and therefore

Yf × P2 × P(W ) ∼G Xf × P2 × P(W ),

with trivial G-action on P2 and projectively linear G-action on P(W ).
This yields:

Proposition 3.3. Given an equivariant Pfaffian-Grassmannian cor-
respondence, we have a twisted equivariant stable birationality between
the corresponding cubic threefold Yf and the associated degree 14 Fano
threefold Xf .

Remark 3.4. We do not know whether or not Yf and Xf are equivari-
antly stably birational, unless we can apply the no-name lemma directly
to E∨

f and Uf , i.e., when V can be chosen to be a G-representation.

Remark 3.5. If there is a G-stable hyperplane Π ⊂ P(V ), with a
genericaly free action of G, then ϱΠ from (3.3) is G-equivariant, and

Y ∼G X.

This happens, e.g., when G is cyclic.

Equivariantly Pfaffian actions. Finite groups which can act regu-
larly and generically freely on smooth cubic threefolds have been clas-
sified in [WY20]. We recall:

• There are 6 maximal groups of automorphisms of smooth cubic
threefolds, by [WY20, Theorem 1.1]:

(3.6) C4
3 ⋊S5, ((C

2
3 ⋊C3)⋊C4)×S3, C24, C16, PSL2(F11), C3 ×S5.

• There are 2 types of actions of the Klein four-group K4, given
(in suitable coordinates) in [WY20, Table 2]:

diag(−1, 1, 1, 1, 1), diag(1, 1,−1, 1, 1),(3.7)

diag(−1,−1, 1, 1, 1), diag(1,−1,−1, 1, 1).(3.8)

Remark 3.6. The unique (up to conjugation) K4 ⊂ PSL2(F11) acts
via (3.8) on the Klein cubic threefold. On the other hand, the S5 with
the permutation action on P4 contains a K4 acting via (3.7) on the
Fermat cubic threefold. By Example 2.1, this second K4 contributes an
incompressible symbol to the class of the action in the Burnside group.

Here we investigate which groups admit equivariantly Pfaffian ac-
tions on smooth cubic threefolds. This is an algorithmic task. With
Magma, we implement the following steps:
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(1) Let G̃ be one of the Schur covers ofG. List faithful 6-dimensional
linear G̃-representations V which induce generically free G-
actions on P(V ).

(2) For each such V , and each isomorphism class of 5-dimensional
subrepresentations of ∧2(V ), choose a generic such A ⊂ ∧2(V );
check whether or not the induced G-action on P(A) is generi-
cally free and

P(A) ∩Gr(2, V )∨

is a smooth cubic threefold.

By construction, any equivariantly Pfaffian action on a smooth cubic
threefold can be obtained in this way. Going through the steps (1) and
(2), we find

Proposition 3.7. Let G be a finite group. Then G admits an equiv-
ariantly Pfaffian action on a smooth cubic threefold if and only if G is
a subgroup of one of the following groups:

PSL2(F11), C3 ⋊D4, F5, C8.

Proof. We start with cyclic G, listed in [WY20, Table 2]; in these cases,
the Schur cover of G is itself. Applying steps (1) and (2) with G̃ = G,
we find that the following do not arise from this construction:

G = C3, with weights (1, 1, 1, ζ3, ζ
a
3 ), a = 0, 1, 2,

G = C4, with weights (1, 1, 1,−1, ζ4).

Excluding all cases in [WY20, Table 2] containing one of the C3 or C4

actions above, we find that the actions of the following abelian groups

C4 × C2, C2
3 , C9, C15, C16, C18, C2 × C2

3 , C24,

C4 × C6, C3
3 , C3 × C9, C4 × C2

3 , C2
2 × C2

3 , C2 × C3
3 , C4

3

on smooth Y and X are not equivariantly Pfaffian.
Then excluding subgroups of the 6 maximal groups in [WY20, The-

orem 1.1] which contain a subgroup isomorphic to one of these abelian
groups, we are left with

PSL2(F11), C3 ⋊D4, S5, C8,

and their subgroups.
Applying steps (1) and (2) above to the Schur cover of S4, we find

that S4 and thus also S5 does not admit equivariantly Pfaffian actions
on smooth cubic threefolds.
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Excluding S4 and S5, we are left with 4 maximal groups

PSL2(F11), C3 ⋊D4, F5, C8.

These admit equivariantly Pfaffian actions on smooth cubic threefolds,
see explicit constructions in Sections 4, 5, and [TZ24]. □

Since every faithful 6-dimensional representation of F5 and C8 ad-
mits a 1-dimensional subrepresentation, the corresponding smooth cu-
bic Y and degree 14 Fano threefolds X are equivariantly birational,
by Remark 3.5. Given our interest in nontrivial (twisted) stable bira-
tionalities, we present in Sections 4 and 5 explicit Pfaffian constructions
for

PSL2(F11), C3 ⋊D4.

Remark 3.8. The proof of Proposition 3.7 confirms computations by
Böhning and von Bothmer indicating that regular C3-actions on smooth
cubic threefold with weights (1, 1, 1, 1, ζ3) are not equivariantly Pfaffian.
On the other hand, we will see in Section 5 that C3-actions with weights
(1, 1, ζ3, ζ

2
3 , ζ

2
3 ) are equivariantly Pfaffian. Proposition 3.7 also shows

that S5 does not admit equivariantly Pfaffian actions on smooth cubic
threefolds. However, an S5-action on singular cubics may arise from
the Pfaffian construction, see Section 7.

Remark 3.9. The papers [CTZ23], [CTZ24], [CMTZ24] classify ac-
tions on cubic threefolds with isolated singularities, under the assump-
tion that the action does not fix any of the singular points, and apply
this classification to linearizability questions. It would be interesting
to explore the equivariant Pfaffian-Grassmannian correspondence for
singular cubic threefolds.

4. Klein cubic threefold and PSL2(F11)-actions

Here we apply the equivariant Pfaffian-Grassmannian correspondence
of Section 3 to the Klein cubic threefold and the associated degree 14
Fano threefold, equipped with the action of G = PSL2(F11).

Writing the representation. Let V be one of the two irreducible
6-dimensional representations of

G̃ := SL2(F11).

Assume V has character

char(V ) = (6,−6, 0, 0, 1, 1, 0,−1,−1,−λ, λ+ 1, 0, 0,−λ− 1, λ),

λ := ζ911 + ζ511 + ζ411 + ζ311 + ζ11.
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Then

∧2(V ∨) = A⊕ V10,

where A and the dual V ∨
10 = A⊥ ⊂ ∧2(V ) are faithful irreducible rep-

resentations of G of dimension 5, respectively, 10. The Pfaffian cubic

Y := P(A) ∩Gr(2, V )∨

is a smooth cubic threefold with a generically free action of G. Such a
cubic (the Klein cubic threefold) is unique; up to a change of variables,
it is given by the equation

{y21y2 + y22y3 + y23y4 + y24y5 + y25y1 = 0} ⊂ P4
y1,...,y5

.

The dual Fano threefold

X := Gr(2, V ) ∩ P(A⊥) ⊂ P9

of degree 14 is also smooth. The equations can be found at [TZ24].

Stabilizer stratification. We compute the fixed loci stratification of
the G-action on Y and X with Magma, recording the data for (orbit
representatives of) loci F with nontrivial generic stabilizeres:

• stabilizer of F ,
• the residual action on F ,
• dimension of F ,
• degree of F ,
• characters of the induced action on the normal bundle to F .

The fixed loci stratification for the G-action on Y is given by

Stabilizer Residue dim deg Characters
1 C6 triv 0 1 (4, 1, 5)
2–3 C2

2 triv 0 1 ((1, 0), (0, 1), (1, 1))
4 C11 triv 0 1 (2, 3, 4)
5 C5 triv 0 1 (1, 3, 4)
6 C5 triv 0 1 (3, 2, 1)
7 C3 triv 0 1 (2, 1, 2)
8 C2 S3 1 3 (1, 1)
9 C2 S3 1 1 (1, 1)
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On the smooth degree 14 Fano threefold X, it is:

Stabilizer Residue dim deg Characters
1 A4 triv 0 1 N/A
2 S3 triv 0 1 N/A
3 C6 triv 0 1 (3, 1, 5)
4 S3 triv 0 1 N/A
5 C2

2 triv 0 1 ((1, 1), (0, 1), (1, 0))
6 C11 triv 0 1 (3, 10, 5)
7–8 C5 triv 0 1 (3, 1, 2)
9 C3 triv 0 1 (2, 2, 1)
10 C3 C2

2 1 2 (2, 1)
11 C2 S3 1 6 (1, 1)

Burnside invariants. The vanishing relation in Burn3(G) mentioned
in Section 2 implies that the only nontrivial contribution to [Y ý G]
comes from points with stabilizer C11; and similarly, for X. (This is
justified even though both Y and X are not standard models.) A direct
computation shows that

[Y ý G] = (C11, 1 ýk, (2, 3, 4))

= (C11, 1 ýk, (3, 10, 5)) = [X ý G] ∈ Burn3(G).

This is not surprising, given Remark 3.5: Y andX are C11-equivariantly
birational. In particular, the Burnside formalism does not allow to dis-
tinguish these actions.

Twisted equivariant stable birationality. Birational rigidity tech-
niques yield (see [BCDP23, Theorem 4.3])

Y ̸∼G X.

On the other hand, applying Proposition 3.3, we have a twisted G-
equivariant stable birationality:

Proposition 4.1. Let G = PSL2(F11), acting on the Klein cubic three-
fold Y and the associated degree 14 Fano threefold X. Then

Y × P2 × P(V ) ∼G X × P2 × P(V ),

with trivial G-action on P2 and projectively linear G-action on P(V ),
arising from a 6-dimensional irreducible representation V of SL2(F11).
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5. C3 ⋊D4-actions

We provide additional examples of nonbirational, but twisted equiv-
ariantly stably birational, actions on smooth Y and X. Here, the
nonbirationality of the actions is established via Burnside invariants.

Writing the representation. Let G = C3 ⋊D4 and V be a faithful
6-dimensional representation of G̃ ≃ C3 ⋊D8, decomposing as

V = V2 ⊕ V4,

where V2 and V4 are irreducible G̃-representations with character

char(V2) = (2,−2, 0, 0, 2, 0,−2, 0, 0, λ,−λ, 0), λ = ζ38 − ζ8,

char(V4) = (4,−4, 0, 0,−2, 0, 2, 0, 0, 0, 0, 0).(5.1)

Then

∧2(V ∨) = U⊕2
1 ⊕ U2 ⊕W⊕2

1 ⊕W2 ⊕W3 ⊕W4 ⊕W5,(5.2)

where U1 and U2 are distinct 1-dimensional andWi, i = 1, . . . , 5 distinct
2-dimensional representations of G.

Let A ⊂ ∧2(V ∨) be a generic 5-dimensional subspace isomorphic, as
a G-representation to

U1 ⊕W1 ⊕W2.

One can check that the Pfaffian cubic

Y := P(A) ∩Gr(2, V )∨

and the associated degree 14 Fano threefold

X := P(A⊥) ∩Gr(2, V )

are smooth, and carry a generically free action of G; see [TZ24] for an
example and equations.

Stabilizer stratification. Note that G contains two conjugacy classes
of the Klein four-group K4, corresponding to the two K4-actions (3.7)
and (3.8), with respective characters in A given by

(5,−3, 1,−3), (5,−1, 1,−1).
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The fixed loci stratification for the first K4-action is given by

Stabilizer Residue dim deg Characters
1 K4 triv 1 3 ((1, 1), (1, 0))
2 K4 triv 0 1 ((1, 0), (0, 1), (1, 0))
3 K4 triv 0 1 ((1, 1), (0, 1), (1, 1))
4 C2 C2 2 3 (1)
5 C2 C2 2 3 (1)
6 C2 C2 1 1 (1, 1)

The fourth and fifth strata are smooth cubic surfaces, and the first
stratum is a smooth cubic curve contained in both cubic surfaces.

On the smooth degree 14 Fano threefold X, we have:

Stabilizer Residue dim deg Characters
1–7 C2 triv 0 1 (1, 1, 1)
8 C2 triv 1 1 (1, 1)
9 C2 triv 1 1 (1, 1)
10 C2 C2 1 6 (1, 1)

The last stratum is a degree 6 smooth curve of genus 1.

Burnside invariants. Using the stabilizer stratification above, we ob-
tain:

Proposition 5.1. For all G′ ⊆ G containing a conjugate of K4 ⊂ G
which acts on A with character

(5,−3, 1,−3),

we have
Y ̸∼G′ X.

Proof. To establish nonbirationality, consider the specified action of
K4 ⊂ G on Y . In the stabilizer stratification, we find incompressible
symbols

(C2, C2 ýk(S), (1)),

where S is a cubic surface and the residual C2-action fixes a smooth
cubic curve on S. This contributes to the class

[Y ý K4] ∈ Burn3(K4),

and is an instance of Example 2.1. On the other hand, we see from the
stabilizer stratification for X that no such symbols arise in [X ý K4].
This implies that

Y ̸∼K4 X.
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□

Twisted equivariant stable birationality. Applying Proposition 3.3
and the construction there with W = V4, we obtain:

Proposition 5.2. We have

Y × P2 × P(V4) ∼G X × P2 × P(V4),

with trivial G-action on P2 and projectively linear G-action on P(V4),
arising from the faithful G̃-representation V4 given by (5.1).

6. Singular examples

Here, we consider actions of dihedral groups D2n of order 4n on cubic
threefolds with 2D4-singularities.

Writing the representation. We start with a faithful irreducible 2-
dimensional representation V2 = V2(χ) of D4n, determined by a primi-
tive character χ = χ4n of C4n. In detail, choose generators

D4n = ⟨s, t | s4n = t2 = tsts = 1⟩,

and consider the representation V2 given by

s 7→
(
ζ−r4n 0
0 ζr4n

)
, t 7→

(
0 1
1 0

)
,

where r is determined by χ4n, gcd(r, 4n) = 1. Put

V = V ⊕3
2 ,

this is a faithful 6-dimensional representation of D4n, with a generically
free action of D2n on its projectivization P(∧2V ).

Decomposing the representations. We have:

∧2(V ) = I⊕3 ⊕W⊕6
1 ⊕W⊕3

2 ,(6.1)

where

• I is the trivial representation of D2n,
• W2 is the irreducible 2-dimensional representation of D2n de-
termined by the character χ2

4n, and
• W1 is the 1-dimensional representation of D2n given by

s 7→ (1), t 7→ (−1).
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Let z1, . . . , z6 be coordinates of V, and fix the following basis of ∧2(V ):

u1 = z1 ∧ z2, u2 = z1 ∧ z3, . . . , u5 = z1 ∧ z6, u6 = z2 ∧ z3,
u7 = z2 ∧ z4, . . . , u15 = z5 ∧ z6.

We can rewrite the decomposition in an appropriate basis

I⊕3 = ⟨u3 + u6⟩ ⊕ ⟨u5 + u8⟩ ⊕ ⟨u12 + u13⟩,
W⊕6

1 = ⟨u1⟩ ⊕ ⟨u10⟩ ⊕ ⟨u15⟩ ⊕ ⟨u3 − u6⟩ ⊕ ⟨u5 − u8⟩ ⊕ ⟨u12 − u13⟩,
W⊕3

2 = ⟨u2, u7⟩ ⊕ ⟨u4, u9⟩ ⊕ ⟨u11, u14⟩.

The invariant Pfaffian cubic. Choose a basis v1, . . . , v15 of ∧2(V ∨)
corresponding to u1, . . . , u15, we have a similar decomposition of ∧2(V ∨)
as in (6.1). Fix the 5-dimensional subspace A ⊂ ∧2(V ∨), with basis

y1 = v2,(6.2)

y2 = v7,

y3 = v5 − v8 − v10 + v12 − v13 − v15,

y4 = −12v1 + v5 − v8 + 2v10 + v12 − v13,

y5 = −3v1 + v5 − v8 − v10.

Then D2n acts generically freely on P(A) = P4
y1,...,y5

, via

s : (y) 7→ (ζ−r2n y1, ζ
r
2ny2, y3, y4, y5),

t : (y) 7→ (y2, y1,−y3,−y4,−y5).
This induces a D2n-action on

Y := P(A) ∩Gr(2, V )∨,

a cubic threefold with 2D4-singularities given by

(6.3) Y = {y1y2y3 + y33 + 3y23y5 + 45y3y
2
4 + 10y34 + y35 = 0} ⊂ P4

y1,...,y5
.

The invariant Fano threefold. The annihilator A⊥ ⊂ ∧2(V ) of A
is a 10-dimensional subspace, with basis

x1 = u1 − 3u10 + 9u12 − 9u13 + 21u15, x2 = u3, x3 = u4,

x4 = u5 − u8 + 2u10 − 3u12 + 3u13 − 6u15, x5 = u6,

x6 = u5 + u8, x7 = u9, x8 = u11,

x9 = u12 + u13, x10 = u14.

The degree 14 Fano threefold

X = Gr(2, V ) ∩ P(A⊥) ⊂ P9
x1,...,x10
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is given by the vanishing of the following polynomials:

− 144x21 + 114x1x4 − 21x24 − x8x10 + x29,

3x1x4 − 9x1x5 − 3x1x6 − 2x24 + 3x4x5 + 2x4x6 + x5x9,

− 9x1x7 + 3x4x7 + x4x10 − x6x10 + x7x9,

21x1x2 − 9x1x4 − 9x1x6 − 6x2x4 − x3x10 + 3x24 + 3x4x6 + x4x9 + x6x9,

− 9x1x3 + 3x3x4 − x3x9 + x4x8 + x6x8

x1x8 + x3x5,

− 9x21 + 3x1x4 + x1x9 + x2x4 − x2x6,

− 3x21 + 2x1x4 + x2x5,

x1x10 − x2x7,

− 9x1x2 − 3x1x4 − 3x1x6 + 3x2x4 − x2x9 + 2x24 + 2x4x6,

− 3x1x7 + 2x4x7 + x5x10,

9x21 − 3x1x4 + x1x9 + x4x5 + x5x6,

21x21 − 6x1x4 − x3x7 − x24 + x26,

− 3x1x3 − x2x8 + 2x3x4,

9x1x4 + 21x1x5 − 9x1x6 − 3x24 − 6x4x5 + 3x4x6 + x4x9 − x6x9 + x7x8.

The group D2n acts generically freely on P9 and X, via

s : (x) 7→ (x1, x2, ζ
−rx3, x4, x5, x6, ζ

rx7, ζ
−rx8, x9, ζ

rx10), ζ = ζ2n,

t : (x) 7→ (−x1, x5, x7,−x4, x2, x6, x3, x10, x9, x8).

The Fano threefold X is singular along two disjoint lines

{x1 = x2 = x3 = x4 = x5 = x6 = x8 = x9 = 0}

and

{x1 = x2 = x4 = x5 = x6 = x7 = x9 = x10 = 0}.

Remark 6.1. Note that here Sing(X) ̸≃ Sing(Y ), contrary to [Kuz04,
Proposition A.4]. This is explained by the fact that the embedding
f : A ↪→ ∧2(V ∨) is not regular, which requires that all forms in A
have rank ≥ 4. In our case, for general subrepresentations in ∧2(V ∨)
isomorphic to A, from (6.2), the locus P(A)∩Gr(2, V ∨) consists of two
points, representing skew-symmetric forms of rank 2 in ∧2(V ∨). These
two points are the singular points of the cubic hypersurface Y .
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Stabilizer stratification. We record the stabilizer stratification for
the G-action on the singular cubic threefold Y :

Stabilizer Residue dim deg Character
1 D2n triv 1 3 N/A
2 Cn triv 0 1 Singular point
3 C2

2 triv 0 1 ((0, 1), (1, 0), (0, 1))
4 C2

2 triv 0 1 ((0, 1), (1, 0), (0, 1))
5 C2 C2 2 3 (1)
6 C2 C2 2 3 (1)
7 C2 Cn 1 1 (1, 1)

As in Section 5, the strata 5 and 6 are cubic surfaces, with residual
action fixing the same smooth cubic curve EY in the stratum 1.

The stratification on the degree 14 Fano threefold X is:

Stabilizer Residue dim deg Character
1 Cn triv 1 1 Singular line
2 Cn C2 1 6 (2r,−2r)
3–8 C2 triv 0 1 (1, 1, 1)
9 C2 triv 1 1 (1, 1)
10 C2 triv 1 1 (1, 1)

Burnside invariants. The first stratum on Y has generic stabilizer
D2n, it is a smooth cubic curve

EY := {y1 = y2 = 0} ∩ Y.

We are in the situation of Example 2.2: the model Y is not in standard
form; after blowing up EY , we obtain the incompressible symbol

(6.4) (C2,Dn ýk(EY )(t), (1)).

Note that the action on the generic fiber of the projectivization of the
normal bundle to EY is nonabelian.

On the other side, the second stratum in the stabilizer stratification
of the degree 14 Fano threefold X is a degree 6, smooth genus 1 curve

EX := {x3 = x7 = x8 = x10 = 0} ∩X,

with stabilizer ⟨s⟩ ≃ Cn. We checked, via Magma, that EY and EX have
the same j-invariant and thus are isomorphic.
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We know that the G-action on X is not in standard form. However,
even after blowups, the resulting class in Burn3(G) differs from the
symbol (6.4) – we cannot get a nonabelian action on the fibers of a
P1-bundle over EX , from an abelian stabilizer.

Therefore, the D2n-actions on X and Y are not equivariantly bira-
tional.

7. S5-actions

Here we investigate the Pfaffian construction for G = S5. Consider
the central extension

G̃ = C2 ⋊ SL2(F5)

with GAP ID (240,90). Note that G̃ is one of the Schur covers of S5

(the other central extensions yield a picture similar to the one described
below).

The group G̃ has two faithful irreducible 6-dimensional linear rep-
resentations, differing by the sign character. Let V be the one with
character

(6,−6, 0, 0, 0, 1, 0, 0, 0,−ζ3 − ζ, ζ3 + ζ,−1), ζ = ζ8.

Then ∧2(V ) is a faithful G-representation decomposing as

∧2(V ∨) = V1 ⊕ V4 ⊕ V5 ⊕ V ′
5 ,

where the character of each summand is given by

V1 : (1,−1, 1, 1,−1, 1,−1),

V4 : (4,−2, 0, 1, 0,−1, 1),

V5 : (5,−1, 1,−1, 1, 0,−1),

V ′
5 : (5, 1, 1,−1,−1, 0, 1).

There are three distinct 5-dimensional subspaces A ⊂ ∧2(V ∨), namely
V5, V

′
5 and V1 ⊕ V4 . The resulting Pfaffian cubic threefolds

Y = P(A) ∩ Gr(2, V )∨

have different singularity types.

A = V5. The cubic threefold Y has 6 A1-singularities. The S5-action
on Y is unique, see [CTZ24, Proposition 7.3].

A = V ′
5 . The cubic Y is the Segre cubic threefold, the unique cubic

with 10 A1-singularities. The S5-action with the prescribed character
is unique. It is the nonstandardS5 in Aut(Y ) = S6, and is linearizable,
see [CTZ24, Section 6].
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A = V1 ⊕ V4. The cubic threefold Y has 5 A1-singularities, with a
transitive action of S5. Such an S5-action is unique [CTZ24, Section
6]. By [CSZ23, Theorem 3.1], the only G-Mori fiber spaces which are
G-birational to Y are a smooth quadric threefold and Y itself; under
the standard Cremona involution, Y is S5-equivariantly birationally
transformed to the smooth quadric threefold given by

y1y2+y1y3+y2y3+y1y4+y2y4+y3y4+y1y5+y2y5+y3y5+y4y5 = 0,

with the same S5 permutation action on the coordinates. The singular
locus of the dual Fano threefold X consists of 10 points, i.e., for each
singularity on Y there two singular points on X – the corresponding
A-net is not regular.
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[BGvBT23b] Chr. Böhning, H.-Chr. Graf von Bothmer, and Yu. Tschinkel.
Equivariant birational types and derived categories, 2023.
arXiv:2311.15881.

[CGR06] V. Chernousov, P. Gille, and Z. Reichstein. Resolving G-torsors by
abelian base extensions. J. Algebra, 296(2):561–581, 2006.

[CMTZ24] I. Cheltsov, L. Marquand, Yu. Tschinkel, and Zh. Zhang. Equivariant
geometry of singular cubic threefolds, II, 2024. arXiv:2405.02744.

[Com20] G. Comaschi. Pfaffian representations of cubic threefolds, 2020.
arXiv:2005.06593.

[CSZ23] I. Cheltsov, A. Sarikyan, and Z. Zhuang. Birational rigidity and alpha
invariants of Fano varieties, 2023. arXiv:2304.11333.

[CTZ23] I. Cheltsov, Yu. Tschinkel, and Zh. Zhang. Equivariant geometry of
the Segre cubic and the Burkhardt quartic, 2023. arXiv:2308.15271.

[CTZ24] I. Cheltsov, Yu. Tschinkel, and Zh. Zhang. Equivariant geometry of
singular cubic threefolds, 2024. arXiv:2401.10974.



22 YURI TSCHINKEL AND ZHIJIA ZHANG

[HKT21] B. Hassett, A. Kresch, and Yu. Tschinkel. Symbols and equivariant bi-
rational geometry in small dimensions. In Rationality of varieties, vol-
ume 342 of Progr. Math., pages 201–236. Birkhäuser/Springer, Cham,
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