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Abstract. We study relations between the classical modular sym-
bols associated with congruence subgroups and Kontsevich-Pestun-
Tschinkel groups Mn(G) associated with finite abelian groups G.

1. Introduction

LetG be a finite abelian group, acting regularly and generically freely
on a smooth projective variety of dimension n ≥ 2 over an algebraically
closed field of characteristic zero. An equivariant birational invariant
of such actions was introduced in [4]. It takes values in the abelian
group

Mn(G),

defined via explicit generators and relations. This group and its gener-
alizations in [5] encode intricate geometric information, leading to new
results in equivariant birational geometry, see, e.g., [3], [6], [9] and [10].
On the other hand, the simplicity of the defining relations of Mn(G)
reveals a rich arithmetic nature: it was found in [4] that Mn(G) carry
Hecke operators, formal (co-)multiplication maps, and are closely re-
lated to Manin’s modular symbols for modular forms of weight 2, when
n = 2.

In this note, we continue the investigation of arithmetic properties of
Mn(G), with a particular focus on their relations with Manin symbols.
Our main results are:

• We settle the algebraic structure of M−
2 (G), a quotient of the

group M2(G), for any finite abelian group G, see Proposition
3.7. The key ingredient is the construction of an isomorphism
between M−

2 (G) and the Z-module of classical Manin symbols
for certain congruence subgroups.
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• We prove a conjecture from [4, Section 11] regarding the Q-
ranks of M2(G)⊗Q when G is cyclic, and generalize the result
to any finite abelian group G.

Here is the roadmap of the paper. In Section 2, we recall relevant
definitions. In Section 3, we study the connections between Manin
symbols and the groups M−

2 (G). Dimensional formulae for M2(G)⊗Q
are given in Section 4.

Acknowledgments: The author is grateful to Yuri Tschinkel and
Brendan Hassett for many helpful conversations.

2. Background

Let G be a finite abelian group, G∨ = Hom(G,C×) its character
group, n a positive integer and

Sn(G)

the Z-module freely generated by n-tuples of characters of G:

β = (b1, . . . , bn), such that
n∑

j=1

Zbj = G∨.

The group Mn(G) is defined via the quotient

Sn(G) → Mn(G)

by the reordering relation

(O): for all β = (b1, . . . , bn) and all σ ∈ Sn, one has

β = βσ := (bσ(1), . . . , bσ(n)),

and the motivic blowup relation

(M): for β = (b1, b2, b3, . . . , bn), one has β = β1 + β2, where

β1 := (b1 − b2, b2, b3, . . . , bn), β2 := (b1, b2 − b1, b3, . . . , bn), n ≥ 2.

A closely related group M−
n (G) is defined as the quotient of Sn(G) by

(O), (M) and the anti-symmetry relation (A):

(A): (b1, . . . , bn) = −(−b1, . . . , bn), for all generating symbols β.

For clarity, we distinguish symbols in Mn(G) and M−
n (G) with the

following notation:
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• ⟨b1, . . . , bn⟩ ∈ Mn(G),
• ⟨b1, . . . , bn⟩− ∈ M−

n (G).

Remark 2.1. The original definition of relation (M) in [4] is more
involved, but is equivalent to the version here, by [3, Proposition 2.1].

When n = 1, we have

M1(G) =

{
Zϕ(N) G = Z/N,N ≥ 1,

0 otherwise,

where ϕ(n) is Euler’s totient function.
When n = 2, M2(G) can be nontrivial for cyclic and bi-cyclic groups.

Below, we present results of numerical computations of Q-ranks of
M2(G) and M2(G)

−. Let

M2(G)Q := M2(G)⊗Q, and M−
2 (G)Q := M−

2 (G)⊗Q.
In the following tables, d and d− denote respectively

dimQ(M2(G)Q) and dimQ(M−
2 (G)Q).

When G = CN is cyclic, we have

N 2 3 4 5 7 9 11 12 13 16 17 19 23 29 31 37
d 0 1 1 2 3 5 6 7 8 10 13 16 23 36 41 58
d− 0 0 0 0 0 1 1 2 2 3 5 7 12 22 16 40

When G = CN1 × CN2 is bi-cyclic, we have

N1 2 2 2 2 2 2 3 3 3 3 4 4 4 5 6
N2 2 4 6 8 10 16 6 3 9 27 8 16 32 25 36
d 0 2 3 6 7 21 15 7 37 235 33 105 353 702 577
d− 0 0 0 1 1 9 7 3 19 163 17 65 257 502 433

In particular, when G = Cp × Cp, for prime p, we have

p 5 7 11 13 17 19 23 29 31 37
d 46 159 855 1602 4424 6759 14047 34314 44415 88254
d− 22 87 555 1098 3272 5139 11143 28434 37215 75942

It was discovered and proved in [4] that

dim(M−
2 (CN)Q) =


1− ϕ(N)+ϕ(N/2)

2
+ N ·ϕ(N)

24
·
∏
p|N

(1 +
1

p
) N even,

1− ϕ(N)
2

+ N ·ϕ(N)
24

·
∏
p|N

(1 +
1

p
) N odd.
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The proof is based on an isomorphism between M−
2 (CN)Q and the

space of modular symbols of the congruence subgroups Γ1(N). From
the tables above, we speculate the following identities

dim(M2(Cp × Cp)Q)
?
=

(p− 1)(p3 + 6p2 − p+ 6)

24
,

dim(M−
2 (Cp × Cp)Q)

?
=

(p− 1)(p3 − p+ 12)

24
,

also signaling a strong connection to modular forms. The remaining
part of this paper is dedicated to a proof of these two identities in the
general setting.

First, observe that the common factor (p− 1) indicates that the
structure of M2(G) and M−

2 (G) can be simplified when G is a bi-
cyclic group. We explain in detail the simplification for M−

2 (G) below.
The same argument also applies to M2(G).

Bi-cyclic groups. Let G = CN ×CMN be a finite bi-cyclic group. By
definition, the Z-module M−

2 (G) is generated by symbols

β := ⟨(a1, b1), (a2, b2)⟩−

such that

a1, a2 ∈ CN , b1, b2 ∈ CMN , Z(a1, b1) + Z(a2, b2) = CN × CMN ,

and subject to relations

• β = ⟨(a2, b2), (a1, b1)⟩−,
• β = ⟨(a1 − a2, b1 − b2), (a2, b2)⟩− + ⟨(a1, b1), (a2 − a1, b2 − b1)⟩−,
• β = −⟨(−a1,−b1), (a2, b2)⟩−.

Formally, we can also denote β by a 2× 2 matrix(
a1 a2
b1 b2

)
and assign a determinant:

det(β) := a1b2 − a2b1 ∈ (Z/N)×,

where the operation takes place modulo N . From the defining relations
(O), (M) and (A), one can see that the linear combinations of symbols
with the same determinant up to ±1 form a submodule of M−

2 (G).
More precisely, for k ∈ (Z/N)×, let

S2,k(G)(2.1)
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be the finite set consisting of matrices/symbols

β :=

(
a1 a2
b1 b2

)
= ⟨(a1, b1), (a2, b2)⟩−

such that

• (a1, b1), (a2, b2) ∈ (CN × CMN)
∨,

• Z(a1, b1) + Z(a2, b2) = (CN × CMN)
∨,

• det(β) = k (mod N),

and
M−

2,k(G)

be the Z-module freely generated by elements in the set

S2,k(G) ∪ S2,−k(G)

subject to relations (O), (M) and (A). It follows that M−
2,k(G) can be

naturally identified as a submodule ofM−
2 (G). Moreover, the algebraic

structure of M−
2,k(G) is independent of k: consider the maps

M−
2,1(G) → M−

2,k(G), ⟨(a1, b1), (a2, b2)⟩− 7→ ⟨(ka1, b1), (ka2, b2)⟩− ;

M−
2,k(G) → M−

2,1(G), ⟨(a1, b1), (a2, b2)⟩− 7→ ⟨(a1/k, b1), (a2/k, b2)⟩−.
These maps respect the defining relations and are inverse to each other.
It follows that we have isomorphisms of Z-modules, when N ≥ 3:

M−
2 (G) ≃

⊕
k∈(Z/N)×/⟨±1⟩

M−
2,k(G) ≃

⊕
ϕ(N)

2
copies

M−
2,1(G).

Multiplication and Co-multiplication. Given an exact sequence
of finite abelian groups

0 → G′ → G→ G′′ → 0,

consider the dual sequence of their character groups

0 → A′′ → A→ A′ → 0.

For all integers n = n′ + n′′, n′, n′′ ≥ 1, one can define a Z-bilinear
multiplication map

∇ : Mn′(G′)⊗Mn′′(G′′) → Mn(G)

given on the generators by

⟨a′1, . . . , a′n′⟩ ⊗ ⟨a′′1, . . . , a′′n′′⟩ →
∑

⟨a1, . . . , an′ , a′′1, . . . , a
′′
n′′⟩,

where the sum is over all possible lifts ai ∈ A of a′i ∈ A′; and a′′i ∈ A
are understood via the embedding A′′ ↪→ A.
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Dual to this construction is the Z-linear co-multiplication map when
G′′ is non-trivial:

∆ : Mn(G) → Mn′(G′)⊗M−
n′′(G

′′).(2.2)

This map is defined on the generators by

⟨a1, · · · , an⟩ 7→
∑

⟨aI′ mod A′′⟩ ⊗ ⟨aI′′⟩−,

where the sum is over all partition of {1, . . . , n} = I ′ ∪ I ′′ such that

• #I ′ = n′, #I ′′ = n′′;
• for all j ∈ I ′′, aj ∈ A′′ ⊂ A; and for any i ∈ I ′, ai mod A′′ is
understood as projection of ai ∈ A in A/A′′;

• the elements aj, j ∈ I ′′, span A′′.

The correctness of ∇ and ∆ can be verified directly [4]; they maps also
descend to well-defined Z-module homomorphisms

∇− : M−
n′(G

′)⊗M−
n′′(G

′′) → M−
n (G),

∆− : M−
n (G) → M−

n′(G
′)⊗M−

n′′(G
′′).

3. Congruence subgroups and Modular Symbols

Congruence subgroups. Connections between M−
2 (CN) and a clas-

sical congruence subgroup

Γ1(N) =

{
γ ∈ SL2(Z) : γ =

(
1 ∗
0 1

)}
, N ≥ 2,

were discovered in [4, Section 11]. To extend their results to bi-cyclic
groups, we introduce a new family of congruence subgroups

Γ(N,MN) :=


(
a b
c d

)
∈ SL2(Z)

∣∣∣∣∣∣∣∣
a ≡ 1 (mod N)
b ≡ 0 (mod N)
c ≡ 0 (mod MN)
d ≡ 1 (mod MN)

 , N ≥ 2.

(3.1)

To see that Γ(N,MN) is indeed a congruence subgroup, one can check
that the definition (3.1) forces

a ≡ 1 mod MN,
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leading to an equivalent description of Γ(N,MN):

Γ(N,MN) =


(
a b
c d

)
∈ SL2(Z)

∣∣∣∣∣∣∣∣
a ≡ 1 (mod MN)
b ≡ 0 (mod N)
c ≡ 0 (mod MN)
d ≡ 1 (mod MN)

 , N ≥ 2.

(3.2)

Using (3.2), one can easily verify the following inclusion relations

SL2(Z) ⊃ Γ1(MN) ⊃ Γ(N,MN) ⊃ Γ(MN)

and conclude that Γ(N,MN) is a congruence subgroup.

Lemma 3.1. [Γ(N,MN) : Γ(MN)] =M .

Proof. Consider the surjective group homomorphism:

Γ(N,MN) → Z/MZ,
(
a b
c d

)
7→ b

N
(mod M).

The kernel of the homomorphism is Γ(MN). In particular,

Γ(N,MN)/Γ(MN) ≃ Z/mZ.
□

To study the space of Manin symbols associated with Γ(N,MN),
one needs a description of the right cosets Γ(N,MN) \ SL2(Z). Now,
we show that Γ(N,MN)\SL2(Z) coincides with the set S2,1(CN×CMN)
introduced in (2.1). Consider a natural map:

Γ(N,MN) \ SL2(Z) → S2,1(CN × CMN),(3.3) (
a b
c d

)
7→
(
a mod N b mod N
c mod MN d mod MN

)
.

The correctness of (3.3) as a bijection between finite sets follows from
elementary computations. Moreover, we have the following lemmas.

Lemma 3.2. For γi =

(
ai bi
ci di

)
∈ SL2(Z), i = 1, 2, one has(

a1 b1
c1 d1

)
≡
(
a2 b2
c2 d2

)
(mod Γ(N,MN))

if and only if

{
a1 ≡ a2 (mod N), c1 ≡ c2 (mod MN),

b1 ≡ b2 (mod N), d1 ≡ d2 (mod MN).

Proof. Basic modular arithmetic, as in [1, Lemma 3.1]. □
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Lemma 3.3. Let

(
a b
c d

)
∈ SL2(Z), and a′, b′, c′, d′ ∈ Z such that

{
a′ ≡ a (mod N), c′ ≡ c (mod MN),

b′ ≡ b (mod N), d′ ≡ d (mod MN),

with 0 ≤ a′, b′ < N and 0 ≤ c′, d′ < MN . Then we have(
a′ b′

c′ d′

)
∈ S2,1(CN × CMN).

Proof. It suffices to check Z(a′, c′) + Z(b′, d′) = CN × CMN . Indeed,(
a′ b′

c′ d′

)(
d −b
−c a

)
=

(
a′d− b′c −a′b+ ab′

c′d− d′c −c′b+ ad′

)
∈ Γ(N,MN),

since ad−bc = 1. This shows (a′, c′) and (b′, d′) generate the generators
(0, 1) and (1, 0) ∈ CN × CMN . □

Proposition 3.4. The map (3.3) is a well-defined bijection between
finite sets.

Proof. Lemmas 3.2 and 3.3 implies (3.3) is a well-defined injection. It
suffices to show it is also surjective. Let

β =

(
a b
c d

)
∈ S2,1(CN × CMN).

By definition, one has ad − bc = 1 + l1N for some l1. The generating
condition implies that gcd(c, d,M) = 1. So there exists k1, k2 ∈ CM

such that

k1d− k2c = −l1 (mod M).

Put

γ =

(
a+ k1N b+ k2N

c d

)
,

One computes that det(γ) ≡ 1 (mod MN), i.e., γ ∈ SL2(Z/MN). Let
γ be a lift of γ in SL2(Z) under the surjection SL2(Z) → SL2(Z/MN).
The lift γ is mapped to β under the map (3.3), proving surjectivity. □
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Modular symbols. We follow Manin’s definition of modular symbols
[7, Section 1.7]. Given the bijection (3.3), the space M2(Γ(N,MN)) of
modular symbols of weight 2 for Γ(N,MN) is defined via generators(

a b
c d

)
∈ S2,1(CN × CMN)

subject to relations

(1)

(
a b
c d

)
+

(
b −a
d −c

)
= 0,

(2)

(
a b
c d

)
+

(
a+ b −a
c+ d −c

)
+

(
b −a− b
d −c− d

)
= 0,

(3)

(
a b
c d

)
= 0 if

(
a b
c d

)
=

(
b −a
d −c

)
or

(
a+ b −a
c+ d −c

)
.

Relation (3) guarantees that the space of modular symbols is torsion-
free. But for Γ(N,MN), relation (3) is redundant as the condition in
(3) is never satisfied. Using relation (1), relation (2) can be rewritten:

0
(2)
=

(
b −a
d −c

)
+

(
b− a −b
d− c −d

)
+

(
−a a− b
−c c− d

)
(1)
= −

(
a b
c d

)
+

(
a− b b
c− d d

)
+

(
a b− a
c d− c

)
.

Equivalently, one can rewrite defining relations of M2(Γ(N,MN)) as

(R1)

(
a b
c d

)
= −

(
b −a
d −c

)
,

(R2)

(
a b
c d

)
=

(
a− b b
c− d d

)
+

(
a b− a
c d− c

)
.

Proposition 3.5. The Z-modules M−
2,1(CN×CMN) and M2(Γ(N,MN))

are isomorphic when N ∈ Z>2 and M ∈ Z≥1.

Proof. When N > 2, consider the map

M−
2,1(CN × CMN) → M2(Γ(N,MN)),(3.4)

⟨(a1, b1), (a2, b2)⟩− 7→



(
a1 a2

b1 b2

)
if a1b2 − a2b1 = 1 (mod N),(

a2 a1
b2 b1

)
if a1b2 − a2b1 = −1 (mod N).

The correctness of the map (3.4) can be verified directly:
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• It is compatible with the relation (O) by construction.
• Relation (M) is identical to relation (R2) and preserves the
determinants of the symbols.

• It is compatible with relation (A) due to the defining relation
(R1) of M2(Γ(N,MN)).

Similarly, one can check that the map given by

M2(Γ(N,MN)) → M−
2,1(CN × CMN),

(
a b
c d

)
7→ ⟨(a, c), (b, d)⟩−

is a well-defined inverse homomorphism to (3.4). □

When N = 2, the map (3.4) in the proof above is not well-defined as
±1 are not distinguishable modulo 2. But in this case, the generating
sets of M−

2 (C2 × C2M) and M2(Γ(2, 2M)) coincide: S2(C2 × C2M) is
simply the free Z-module generated by elements in S2,1(C2×C2M). We
can then consider the Z-module

M−
2 (Γ(2, 2M))

defined as the quotient of S2(C2 × C2M) by relations (R1) and (R2),
i.e., the quotient of M2(Γ(2, 2M)) by

(O) :

(
a b
c d

)
=

(
b a
d c

)
.

Proposition 3.6. The Z-modules M−
2 (C2 ×C2M) and M−

2 (Γ(2, 2M))
are isomorphic for all integers M ∈ Z≥1.

Proof. With the presence of (O), the relation (R1) is identical to (A).
It follows that relations (R1) and (R2) generate the same submodule
of S2(C2 × C2M) as (M) and (A) does. □

It is classically known that M2(Γ(N,MN)) can be identified as

H1(X(N,MN),Z),

the first homology group of the complex modular curve X(N,MN)
compactified with respect to the cusps [7, Theorem 1.9]. We follow
definitions in [8, Chapter 1.3]:

• X(N,MN) := Γ(N,MN)\h, where h is the upper half-plane,
• P1(Q) := Q∪{∞}, cusps are the elements of P1(Q)/Γ(N,MN),
• h∗ := h ∪ P1(Q) is the extended upper half-plane,

• X(N,MN) := Γ(N,MN)\h∗.
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In particular, a symbol

(
a b
c d

)
corresponds to the image inX(N,MN)

of the geodesic path from a/c to b/d, where a, b, c and d are naturally
considered as integers. Moreover, M−

2 (Γ(2, 2M)) can be identified as
the (−1)-eigenspace of the antiholomorphic involution on X(2, 2M)
given by the map τ 7→ −τ̄ , τ ∈ H, on the universal cover. On modular
symbols, ι takes the form

ι :

(
a b
c d

)
7→
(
a −b
−c d

)
(R1)
= −

(
−b −a
d c

)
mod 2
= −

(
b a
d c

)
.

This forces a 2-torsion in M−
2 (Γ(2, 2M)) each time a cusp different from

∞ is fixed by ι.
Concretely, these imply that

dim(M2(Γ(N,MN)Q) = 2g(N,MN) + ε∞(N,MN)− 1,(3.5)

dim(M−
2 (Γ(2, 2M)Q) = g(2, 2M) +

ε∞(2, 2M)− ε(2, 2M)

2
,

Tors(M2(Γ(N,MN)) = 0, Tors(M−
2 (Γ(2, 2M))) = (Z/2)ε(2,2M)−1,

where

• g(N,MN) is the genus of X(N,MN) as a compact Riemann
surface,

• ε∞(N,MN) is the number of cusps, i.e., the cardinality of
P1(Q)/Γ(N,MN).

• ε(2, 2M) is the number of cusps fixed by the anti-holomorphic
involution on X(2, 2M).

• Tors refers to the torsion subgroup.

We compute each term appearing in (3.5). It is well-known that

|P1(Q)/Γ(MN)| = M2N2

2
·
∏
p|MN

(1− p−2).

Recall from Lemma 3.1 that [Γ(N,MN) : Γ(MN)] =M . Then

ε∞(N,MN) =
MN2

2
·
∏
p|MN

(1− p−2).

Using the genus formula of modular curves [2, Theorem 3.1.1], we ob-
tain for N ≥ 3 and M ≥ 1:

g(N,MN) = 1 +
MN2(MN − 6)

24
·
∏
p|MN

(1− p−2).
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To compute ε(2, 2M), first observe that

Γ(2, 2M) =
⋃

j∈Z/M

Γ(2M) ·
(
1 2j
0 1

)
.

Two reduced rational numbers a/c and a′/c′ lie in the same equivalence
class of cusps in P1(Q)/Γ(2, 2M) if and only if

a

c
≡ a′

c′
+ 2j (mod Γ(2M)) for some j ∈ Z/M,

if and only if [2, Proposition 3.8.3]

(a′, c′) ≡ ±(a+ 2jc, c) (mod 2M), for some j ∈ Z/M.

A counting argument leads to

ε(2, 2M) = 2ϕ(M) + ϕ(2M), M > 2.

We summarize the computations above and results in [4, Section 11]:

Proposition 3.7. Let G be a finite abelian group. Then

• When G = CN , N ≥ 5 and N is even,

dim(M−
2 (G)Q) = 1− ϕ(N) + ϕ(N/2)

2
+
N · ϕ(N)

24
·
∏
p|N

(1 +
1

p
),

Tors(M−
2 (G)) = (Z/2)ϕ(N)+ϕ(N/2)−1.

• When G = CN , N ≥ 5 and N is odd,

dim(M−
2 (G)Q) = 1− ϕ(N)

2
+
N · ϕ(N)

24
·
∏
p|N

(1 +
1

p
),

Tors(M−
2 (G)) = (Z/2)ϕ(N)−1.

• When G = C2 × C2M , M ≥ 3,

dim(M−
2 (G)Q) = 1− ϕ(M)− ϕ(2M)

2
+
M2

3
·
∏
p|MN

(1− p−2),

Tors(M−
2 (G)) = (Z/2)2ϕ(M)+ϕ(2M)−1.

• When G = CN × CMN , N ≥ 3, M ≥ 1,

dim(M−
2 (G)Q) =

ϕ(N)

2

1 +
M2N3

12
·
∏
p|MN

(1− p−2)

 ,

Tors(M−
2 (G)) = 0.

• M−
2 (C2) = M−

2 (C3) = Z/2, M−
2 (C4) = M−

2 (C
2
2) = (Z/2)2.
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• M−
2 (G) = 0 if G is not in any of the cases above.

4. Dimensional Formulae

Consider the natural quotient map of M2(G) by relation (A)

µ− : M2(G) → M−
2 (G).

In this section, we determine the Q-rank of the kernel of µ−. First, we
introduce an auxiliary group

M+
1 (G)

defined as the quotient of M1(G) = S1(G) by the relation

(P) : ⟨a1⟩ = ⟨−a1⟩,
and denote by ⟨a1⟩+ ∈ M+

1 (G) the image of ⟨a⟩ ∈ M1(G) under the
natural projection

µ+ : M1(G) → M+
1 (G).

We have

M+
1 (G) =


Z

ϕ(N)
2 G = CN , N > 2,

Z G = CN , N = 1, 2,

0 otherwise.

Given a finite abelian group G and a subgroup G′ ⊊ G such that
G′ = Cd for some d ∈ Z≥1, there is a map

νG′ : Mn(G) → M+
1 (G

′)⊗M−
n−1(G

′′),(4.1)

obatined as the composition of the co-multiplication map and µ+. No-
tice that νG′ is non-trivial only when G′ is cyclic. Put

ν :=
⊕
G′⊊G

νG′ ,

where the sum runs through all proper cyclic subgroups (including the
trivial one) G′ ⊊ G. We will show that the restriction of ν to

Kn(G) := ker
(
Mn(G) → M−

n (G)
)

is an isomorphism over Q. Formally, consider the map

νKn(G) : Kn(G) →
⊕
G′⊊G

M+
1 (G

′)⊗M−
n−1(G/G

′).(4.2)

We construct an inverse of νKn(G) over Q:

ψ :
⊕
G′⊊G

M+
1 (G

′)⊗M−
n−1(G/G

′) → Kn(G)(4.3)
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in the following way:

Let G′ = Cd ⊊ G be a cyclic subgroup of G. We denote by

A,A′, and A′′

the character group of
G,G′, and G/G′

respectively. For any
⟨a⟩+ ∈ M+

1 (Cdi)

and
⟨b1, b2, . . . , bn−1⟩− ∈ M−

n−1(G/G
′),

we set
b := {b1, b2, . . . , bn−1},

and

ω(a, b) := ⟨a⟩+ ⊗ ⟨b1, . . . , bn−1⟩− ∈ M+
1 (G

′)⊗M−
n−1(G/G

′).

Find an arbitrary lift a′ ∈ A of a ∈ A′ and put

γ(a, b) := ⟨a′, b1, . . . , bn−1⟩+ ⟨−a′, b1, . . . , bn−1⟩ ∈ Kn(G),

where bi are understood via the embedding A′′ ⊂ A. Then we define

ψ(ω(a, b)) :=
1

2
γ(a, b).(4.4)

Notice that ψ is defined over Q. It is not hard to see that

νG′(
1

2
γ(a, b) ) = ω(a, b)(4.5)

and the map ψ is compatible with relations (O) and (M). It remains
to check that the construction is independent of the lift a′ and ψ is also
compatible with relations (P) and (A) as a homomorphism between
Q-vector spaces.

Lemma 4.1. With the notation above, the definition of ψ is indepen-
dent of the choice of the lift a′ of a.

Proof. Let a1, a2 ∈ A be two lifts of a ∈ A′, i.e., there exists g ∈ A′′

such that a2 = a1 + g. Relations (S) and (M) imply that

⟨a1, b1, . . .⟩ = ⟨a1 − b1, b1, . . .⟩+ ⟨a1, b1 − a1, . . .⟩,
⟨b1 − a1, b1, . . .⟩ = ⟨−a1, b1, . . .⟩+ ⟨a1, b1 − a1, . . .⟩.

Taking the difference between the two lines above, one has

⟨a1, b1, . . .⟩+ ⟨−a1, b1, . . .⟩ = ⟨a1 − b1, b1, . . .⟩+ ⟨b1 − a1, b1, . . .⟩.
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Iterating this process with bi, we obtain

⟨a1, b1, . . .⟩+⟨−a1, b1, . . .⟩ = ⟨a1−
n−1∑
i=1

mibi, b1, . . .⟩+⟨
n−1∑
i=1

mibi−a1, b1, . . .⟩

where mi ∈ Z≥0 for all i. Since bi generate A
′′, we conclude that

⟨a1, b1, . . .⟩+ ⟨−a1, b1, . . .⟩ = ⟨a2, b1, . . .⟩+ ⟨−a2, b1, . . .⟩.

□

Notice that Lemma 4.1 also implies that ψ is compatible with the
relation (P). Indeed, let a′ be a lift of a ∈ A′ in A and a′′ a lift
of −a ∈ A′ in A. Then a′′ = −a′ + g for some g ∈ A′′ and thus
γ(a, b) = γ(−a, b). The compatibility of ψ with the relation (A) is
reduced to the following lemma.

Lemma 4.2. Let n ≥ 2 be an integer, G be a finite abelian group and
⟨a1, . . . , an⟩ be any generating symbol of Mn(G), one has∑

ε1,ε2=±1

⟨ε1a1, ε2a2, a3, . . . , an⟩ = 0 ∈ Mn(G)⊗Q.

Proof. For simplicity, we denote the sum in the assertion by

δ(⟨a1, . . . , an⟩) :=
∑

ε1,ε2=±1

⟨ε1a1, ε2a2, a3, . . . , an⟩.

Consider a group action of SL2(Z) on δ(⟨a1, . . . , an⟩) via(
a b
c d

)
· δ(⟨a1, a2, a3, . . . , an⟩) = δ(⟨aa1 + ba2, ca1 + da2, a3, . . . , an⟩).

Equivalently, we can view this as an action of SL2(Z) on (G∨)2. The
action is in fact trivial in Mn(G). It suffices to check this on generators
of SL2(Z): (

0 1
−1 0

)
and

(
1 1
0 1

)
.

By symmetry, it is clear that

δ(⟨a1, a2, . . . , an⟩) = δ(⟨a2,−a1, . . . , an⟩).
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On the other hand, one has

δ(⟨a1 + a2, a1, a3, . . . , an⟩)
= ⟨a1 + a2, a1, . . .⟩+ ⟨−a1 − a2,−a1, . . .⟩+ ⟨a1 + a2,−a1, . . .⟩+

⟨−a1 − a2, a1, . . .⟩
applying (M) to the first two terms above

= ⟨a1, a2, . . .⟩+ ⟨−a1,−a2, . . .⟩+ ⟨a1 + a2,−a2, . . .⟩+
⟨−a1 − a2, a1, . . .⟩+ ⟨−a1 − a2, a2, . . .⟩+ ⟨a1 + a2,−a1, . . .⟩
applying (M) to the last four terms above

= ⟨a1, a2, . . .⟩+ ⟨−a1,−a2, . . .⟩+ ⟨a1,−a2, . . .⟩+ ⟨−a1, a2, . . .⟩
= δ(⟨a1, a2, . . . , an⟩).

Consider

S :=
∑
a,b

⟨a, b, a3, . . . , an⟩,(4.6)

where the sum runs over the SL2(Z)-orbit of (a1, a2) in (G∨)2. Observe
that the orbit is finite as G is a finite group. Applying relation (M) to
each term in the sum, one finds that

S =
∑
a,b

⟨a− b, b, a3, . . . , an⟩+ ⟨a, b− a, a3, . . . , an⟩

= 2
∑
a,b

⟨a, b, a3, . . . , an⟩

since(
a− b
b

)
=

(
1 −1
0 1

)
·
(
a
b

)
,

(
a

b− a

)
=

(
1 0
−1 1

)
·
(
a
b

)
.

Similarly, averaging δ over this orbit leads to∑
a,b

δ(⟨a, b, a3, . . . , an⟩)

=
∑
a,b

⟨a, b, . . .⟩+ ⟨−a, b, . . .⟩+ ⟨a,−b, . . .⟩+ ⟨−a, b, . . .⟩

applying (4.6) to each term

= 2 ·
∑
a,b

δ(⟨a, b, a3, . . . , an⟩).
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Recall that δ is invariant under the SL2(Z)-action. We conclude that

δ(⟨a1, . . . , an⟩) = 0 ∈ Mn(G)⊗Q.
□

Proposition 4.3. The map ψ is well-defined over Q. In addition,
νKn(G) and ψ are inverse to each other over Q.

Proof. The correctness of ψ is due to Lemma 4.1 and 4.2. By definition,
Kn(G) is generated by

γ(a, b) = ⟨a, b1, . . . , bn−1⟩+ ⟨−a, b1, . . . , bn−1⟩.
Let G′ be the subgroup of G such that

n−1∑
i=1

Zbi = (G/G′)∨.

The definition of the co-multiplication map ensures that

νKn(G)(γ(a, b)) = νG′(γ(a, b))

and one can deduce from (4.5) that

ψ ◦ νKn(G)(γ(a, b)) = ψ(2ω(a, b)) = γ(a, b),

where the last equality holds by Lemma 4.1. Similarly, for any

ω(a, b) = ⟨a⟩+ ⊗ ⟨b1, . . . , bn−1⟩− ∈ M+
1 (G

′)⊗M−
n−1(G/G

′),

one has

νKn(G) ◦ ψ(ω(a, b)) = νKn(G)(
1

2
γ(a, b)) = ω(a, b).

It follows that ψ and νKn(G) are inverse to each other as homomorphisms
between Q-vector spaces. □

Dimensional Formulae. Proposition 4.3 provides an effective com-
putation for

dim(Mn(G)Q)− dim(M−
n (G)Q).

In particular, it implies the hypothetical formula (note that the original
formula in [4, Section 11] is wrong)

dim(M2(CN)Q)− dim(M−
2 (CN)Q)

N>5
=


ϕ(N)

2
+

1

4

∑
d|N,3≤d≤N/3

ϕ(d)ϕ(N/d) N odd,

ϕ(N) + ϕ(N
2
)

2
+

1

4

∑
d|N,3≤d≤N/3

ϕ(d)ϕ(N/d) N even.
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Combining this with Proposition 3.7, we obtain an effective computa-
tion for

dim(M2(G)Q).

For example, when G = Cp × Cp, p an odd prime, one has

dim(M2(Cp × Cp)⊗Q)− dim(Q⊗M−
2 (Cp × Cp)) =

(p+ 1)(p− 1)2

4
and thus

dim(M2(Cp × Cp)⊗Q) =
(p− 1)(p3 + 6p2 − p+ 6)

24
,

which is consistent with results of computer experiments recorded in
Section 2.
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