MODULAR SYMBOLS AND EQUIVARIANT
BIRATIONAL INVARIANTS

ZHIJIA ZHANG

ABSTRACT. We study relations between the classical modular sym-
bols associated with congruence subgroups and Kontsevich-Pestun-
Tschinkel groups M., (G) associated with finite abelian groups G.

1. INTRODUCTION

Let GG be a finite abelian group, acting regularly and generically freely
on a smooth projective variety of dimension n > 2 over an algebraically
closed field of characteristic zero. An equivariant birational invariant
of such actions was introduced in [4]. It takes values in the abelian

group
M, (G),

defined via explicit generators and relations. This group and its gener-
alizations in [5] encode intricate geometric information, leading to new
results in equivariant birational geometry, see, e.g., [3], [6], [9] and [10].
On the other hand, the simplicity of the defining relations of M,,(G)
reveals a rich arithmetic nature: it was found in [4] that M,,(G) carry
Hecke operators, formal (co-)multiplication maps, and are closely re-
lated to Manin’s modular symbols for modular forms of weight 2, when
n=2.

In this note, we continue the investigation of arithmetic properties of
M., (G), with a particular focus on their relations with Manin symbols.
Our main results are:

e We settle the algebraic structure of M3 (G), a quotient of the
group My(G), for any finite abelian group G, see Proposition
3.7 The key ingredient is the construction of an isomorphism
between M (G) and the Z-module of classical Manin symbols
for certain congruence subgroups.

Date: July 16, 2024.



2 ZHIJIA ZHANG

e We prove a conjecture from [4, Section 11] regarding the Q-
ranks of My(G) ® Q when G is cyclic, and generalize the result
to any finite abelian group G.

Here is the roadmap of the paper. In Section [2| we recall relevant
definitions. In Section [3] we study the connections between Manin
symbols and the groups M; (G). Dimensional formulae for Ms(G)®@Q
are given in Section [4]

Acknowledgments: The author is grateful to Yuri Tschinkel and
Brendan Hassett for many helpful conversations.
2. BACKGROUND

Let G be a finite abelian group, G¥ = Hom(G,C*) its character
group, n a positive integer and

S.(G)
the Z-module freely generated by n-tuples of characters of G:
B=(by,...,by), such that Zzz)j —QV.

j=1
The group M,,(G) is defined via the quotient
Sn(G) = My(G)

by the reordering relation
(O): for all 3= (by,...,b,) and all 0 € &,,, one has
B =7 = (bsr),- -+ bom)),
and the motivic blowup relation
(M): for g = (by,bs,bs,...,b,), one has 8 = f; + B2, where

61 = (bl - 627b27b37 . 'an)a 62 = (b17b2 - b17b37 ce 7bn)7 n > 2.

A closely related group M, (G) is defined as the quotient of S,,(G) by
(0), (M) and the anti-symmetry relation (A):

(A): (by,...,b,) = —(=b1,...,by,), for all generating symbols f.

For clarity, we distinguish symbols in M,,(G) and M (G) with the
following notation:
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® <b1, PN 7bn> c Mn(G),

o (by,....b,)” € M_(G).
Remark 2.1. The original definition of relation (M) in [4] is more
involved, but is equivalent to the version here, by [3] Proposition 2.1].

When n =1, we have

Z°N) G =7Z/N,N >1,
M, (G) _{ / B

0 otherwise,

where ¢(n) is Euler’s totient function.
When n = 2, My(G) can be nontrivial for cyclic and bi-cyclic groups.
Below, we present results of numerical computations of QQ-ranks of

My(G) and Mo(G)~. Let
My(G)g = May(G)®Q, and M, (G)g = M, (G)® Q.
In the following tables, d and d~ denote respectively
dimg(M2(G)g) and dimg(M; (G)g).
When G = Cly is cyclic, we have

N ‘ 2345 79 11 12 13 16 17 19 23 29 31 37
d|01 1235 6 7 8 10 13 16 23 36 41 58
ajooo0oo0o0o1 1 2 2 3 5 7 12 22 16 40

When G = Cy, x Cy, is bi-cyclic, we have

N2 222 2 2 3 3 3 3 4 4 4 3 6

N2 46 8 10 16 6 3 9 27 8 16 32 25 36
d|0 2 3 6 7 21 15 7 37 235 33 105 353 702 577
a0 001 1 9 7 3 19 163 17 65 257 502 433

In particular, when G = C,, x C,, for prime p, we have

D ‘ 5 7 11 13 17 19 23 29 31 37
d |46 159 855 1602 4424 6759 14047 34314 44415 88254
d- |22 87 555 1098 3272 5139 11143 28434 37215 75942

It was discovered and proved in [4] that

. 1
1 — SR g MO T+ 2_9) N even,
dim(M; (Cn)e) = Ay
1—@+%§N’-H(1+]—9) N odd.
pIN
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The proof is based on an isomorphism between M; (Cy)p and the
space of modular symbols of the congruence subgroups I';(N). From
the tables above, we speculate the following identities

: r (p—1)(p*+6p* —p+6
dmwM%XQWZ@ )@2f P X

3
dm(M5 (€, x Cy)g) £ LD P+ 2]

also signaling a strong connection to modular forms. The remaining
part of this paper is dedicated to a proof of these two identities in the
general setting.

First, observe that the common factor (p — 1) indicates that the
structure of My(G) and M; (G) can be simplified when G is a bi-
cyclic group. We explain in detail the simplification for M5 (G) below.

The same argument also applies to Ma(G).

Bi-cyclic groups. Let G = Cy x Cy;n be a finite bi-cyclic group. By
definition, the Z-module M, (G) is generated by symbols

B = <<a’17 b1)7 (CLQ, b2)>7
such that
ar,az € Cn, b1,by € Cyn,  Z(a1,b1) + Z(ag, by) = Cn x Cuw,

and subject to relations

o = {((az,bs), (a1,b1))",
o f=((a1 —ag, b1 —by), (az,b9))” + ((a1,b1), (a2 — a1,ba — by))~,
o 3= —((—a,—b1), (az,b2))".

Formally, we can also denote § by a 2 x 2 matrix

a; as
by b
and assign a determinant:
det(b’) = albg — CL2b1 S (Z/N)X7

where the operation takes place modulo N. From the defining relations
(0), (M) and (A), one can see that the linear combinations of symbols
with the same determinant up to £1 form a submodule of M, (G).
More precisely, for k € (Z/N)*, let

(2.1) S2.x(G)
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be the finite set consisting of matrices/symbols

B = (le Z;) = ((a1,b1), (az, b2))~

such that

o (ay1,b1), (ag, by) € (Cy x Cyn)Y,
[} Z(al,b1> +Z<a2,b2) = (CN X C(MN)\/7
e det(f) =k (mod N),

and
M3 (G)
be the Z-module freely generated by elements in the set
S0k (G) U Sy £ (G)

subject to relations (O), (M) and (A). It follows that M, (G) can be

naturally identified as a submodule of M3 (G). Moreover, the algebraic
structure of M;, (G) is independent of k: consider the maps

Mo (G) = Mo (G), ((a1,01), (a2, b))~ = ((kai, b1), (kaz, b2)) ™ ;
Mo (G) = Mo (G),  ((a1,b1), (a2, b2))” = ((a1/k, br), (as/k, b2)) ™.

These maps respect the defining relations and are inverse to each other.
It follows that we have isomorphisms of Z-modules, when N > 3:

M; (G) ~ GB MM ~ P M (G

ke(Z/N)> ‘7’( ) copies

Multiplication and Co-multiplication. Given an exact sequence
of finite abelian groups

0—-G —-G—-G"—=0,
consider the dual sequence of their character groups
0—-A" A=A -0

For all integers n = n’ + n”,n’;n” > 1, one can define a Z-bilinear
multiplication map

V : Mn’ (G/> ® Mn” (G//) — Mn(G)
given on the generators by
(a},...,ay®{d],... adl,) — Z(al, oy al o al),

where the sum is over all possible lifts a; € A of a} € A’; and a] € A
are understood via the embedding A” — A.
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Dual to this construction is the Z-linear co-multiplication map when
G" is non-trivial:

(2.2) A M, (G) = My (G") @ M. (G").
This map is defined on the generators by
(a1, an) = Y (ap mod A") ® (ap)”,

where the sum is over all partition of {1,...,n} = I’ U I” such that

° #I/ — n/7 #I// — n//;

o forall j € I”, a; € A” C A; and for any i € I’, ¢; mod A" is
understood as projection of a; € A in A/A”;

e the elements a;,j € I”, span A”.

The correctness of V and A can be verified directly [4]; they maps also
descend to well-defined Z-module homomorphisms

V7 ML(G) © M (GY) = M (@),

AT M (G) = M (G) @ M, (G).

3. CONGRUENCE SUBGROUPS AND MODULAR SYMBOLS

Congruence subgroups. Connections between M; (Cy) and a clas-
sical congruence subgroup

Fl(N)—{veSLg(Z):y— (é ’{)} N>2

were discovered in [4, Section 11]. To extend their results to bi-cyclic
groups, we introduce a new family of congruence subgroups

(3.1)

a=1 (mod N)
o a b b=0 (mod N)

(N, MN) = (C d)eSL2(Z) c=0 (medaN) (@ NZ2
d=1 (mod MN)

To see that I'(N, M N) is indeed a congruence subgroup, one can check
that the definition ([3.1)) forces

a=1 mod MN,
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leading to an equivalent description of I'(N, M N):

(3.2)
a=1 (mod MN)

(N, MN) = <CC‘ Z) € SLy(Z) iig EEZS ]]:QN)  N>2
=1 (mod MN)

Using , one can easily verify the following inclusion relations
SLy(Z) D T1v(MN) D I'(N,MN) D T'(MN)

and conclude that I'(N, M N) is a congruence subgroup.

Lemma 3.1. [['(N,MN) :T(MN)] = M.

Proof. Consider the surjective group homomorphism:

a b b
I(N, MN) = Z/MZ, (C d) — < (mod M),

The kernel of the homomorphism is I'(M N). In particular,
(N, MN)/T(MN) ~ Z/mZ.
O

To study the space of Manin symbols associated with T'(N, M N),
one needs a description of the right cosets I'(N, M N) \ SLy(Z). Now,
we show that I'(N, M N)\SL(Z) coincides with the set Sy 1(Cy xCyrn)
introduced in . Consider a natural map:

(33) F(N, MN) \ SLQ(Z) — 8271(0]\[ X CMN),

a b (e mod N b mod N

c d ¢ mod MN d mod MN /"~
The correctness of (3.3) as a bijection between finite sets follows from
elementary computations. Moreover, we have the following lemmas.

a; b

Lemma 3.2. For v, = o d

aq b1
C1 dl

if and only if {al =ay (mod N), ¢ = ¢ (mod MN),

7~ N\

) € SLy(Z), i = 1,2, one has

(CCL; flz) (mod T(N, MN))

by = by (mod N), dy =dy (mod MN).

Proof. Basic modular arithmetic, as in [Il, Lemma 3.1]. O
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a b

Lemma 3.3. Let (
c d

) € SLo(Z), and o'V, ,d" € Z such that

ad=a (modN), ¢=c (mod MN),
V=0b (mod N), d=d (mod MN),

with 0 < a',t/ <N and 0 < ,d < MN. Then we have
/ b/
(CCL/ d’) € 81 (Cy x Cyn).
Proof. 1t suffices to check Z(d', ') + Z(V',d') = Cy x Cyy. Indeed,
a v d —-b\ (dd—-Vbc —db+al
(c’ d’) (—c a) - (c’d—d’c —c’b—i—ad’) € D(N, MN),

since ad —bc = 1. This shows (d/, ¢’) and (¥, d’) generate the generators
(0, 1) and (1,0) € CN X CMN- O

Proposition 3.4. The map (3.3)) is a well-defined bijection between
finite sets.

Proof. Lemmas and implies (3.3) is a well-defined injection. It
suffices to show it is also surjective. Let

b
B = (CCZ d> € SQJ(CN X CMN)

By definition, one has ad — bc = 1 4 [; N for some [;. The generating
condition implies that ged(c,d, M) = 1. So there exists ki, ke € Cy
such that

kld - k’QC = —ll (mod M)

Put

. &—l—klN b+/{52N
’7— c d )

One computes that det(y) =1 (mod M N), i.e., v € SLy(Z/MN). Let
7 be a lift of v in SLy(Z) under the surjection SLy(Z) — SLo(Z/MN).
The lift 7 is mapped to 8 under the map (3.3|), proving surjectivity. O
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Modular symbols. We follow Manin’s definition of modular symbols
[7, Section 1.7]. Given the bijection (3.3)), the space My(I'(IN, M N)) of
modular symbols of weight 2 for I'(N, M N) is defined via generators

subject to relations

o (22 Z2)=o
(2) (g b a+b —a b —a—>

d) T\e+d —c) T \a —c—d):’

b_O.fab_b—a a+b —a
d] lcd_d—corc+d—c'

c
Relation (3) guarantees that the space of modular symbols is torsion-
free. But for I'(N, M N), relation (3) is redundant as the condition in
(3) is never satisfied. Using relation (1), relation (2) can be rewritten:

0@ b —a N b—a —b Y a—b
- \d —c d—c —d —c c¢—d
a b a—b b a b—a
_(c d)+(c—d d)+(c d—c)'
Equivalently, one can rewrite defining relations of My (I'(N, M N)) as
a b b —a
(R1) (c d) - <d —c) ’
a b a—0b b a b—a
(R2) (c d)—(c—d d)+(c d—c)'
Proposition 3.5. The Z-modules M3 (CnxCyy) and My(I'(N, M N))
are isomorphic when N € Z~o and M € Z>,.

—
=
=

Proof. When N > 2, consider the map

(3.4) My, (Cn x Cyy) — Ma(I'(N, M N)),
A if albg — &2[)1 =1 (mod N),
by by

((a1,01), (a2, b))~

42 @ if a1b2 — CLle =—-1 (HlOd N)
by by

The correctness of the map ({3.4) can be verified directly:
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e It is compatible with the relation (O) by construction.
e Relation (M) is identical to relation (R2) and preserves the
determinants of the symbols.
e It is compatible with relation (A) due to the defining relation
(R1) of My(I'(IV, M N)).
Similarly, one can check that the map given by

My (I(N, MN)) = My, (Cy x Carw), (‘c‘ 2) — ((a,c), (b,d))~

is a well-defined inverse homomorphism to (|3.4)). 0

When N = 2, the map in the proof above is not well-defined as
+1 are not distinguishable modulo 2. But in this case, the generating
sets of M5 (Cy x Copy) and My (I'(2,2M)) coincide: Sa(Cy x Copy) is
simply the free Z-module generated by elements in Sy 1(Cy X Capr). We
can then consider the Z-module

M5 (T'(2,2M))

defined as the quotient of Sy(Cy x Coyy) by relations (R1) and (R2),
i.e., the quotient of My(I'(2,2M)) by

(¢ a)= (0 %)

Proposition 3.6. The Z-modules M3 (Cy x Capr) and My (I'(2,2M))

are isomorphic for all integers M € Z>;.

Proof. With the presence of (O), the relation (R1) is identical to (A).
It follows that relations (R1) and (R2) generate the same submodule
of So(Cy x Capy) as (M) and (A) does. O

It is classically known that My (I'(IV, M N)) can be identified as
HI(X(N7 MN)7 Z)>

the first homology group of the complex modular curve X (N, MN)
compactified with respect to the cusps [7, Theorem 1.9]. We follow
definitions in [8, Chapter 1.3]:
e X(N,MN):=T(N,MN)\b, where b is the upper half-plane,
e P1(Q) := QU{oc}, cusps are the elements of P (Q)/T'(N, M N),
e h* := hUP(Q) is the extended upper half-plane,
o X (N, MN) := I'(N, MN)\h*.
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In particular, a symbol corresponds to the image in X (N, M N)

b
d
of the geodesic path from a/c to b/d, where a,b, ¢ and d are naturally
considered as integers. Moreover, M (I'(2,2M)) can be identified as
the (—1)-eigenspace of the antiholomorphic involution on X (2,2M)
given by the map 7+ —7,7 € H, on the universal cover. On modular
symbols, ¢ takes the form

.abHa—b(EEL)_—b—a mod2 (b a
L le d — d ) d ¢ B d c)-

This forces a 2-torsion in M (I'(2, 2M)) each time a cusp different from
oo is fixed by ¢.

Concretely, these imply that
(3.5) dim(My(I'(N, MN)qg) = 29(N, MN) + eooc(N,MN) — 1,
£0o(2,2M) — €(2,2M)

2 Y

Tors(My(T'(N, MN)) = 0, Tors(Mj (I'(2,2M))) = (Z/2)s>*) =1,

where

e g(N,MN) is the genus of X (N, MN) as a compact Riemann
surface,

e co(N,MN) is the number of cusps, i.e., the cardinality of
P1(Q)/T(N, MN).

e £(2,2M) is the number of cusps fixed by the anti-holomorphic
involution on X (2,2M).

e Tors refers to the torsion subgroup.

We compute each term appearing in (3.5)). It is well-known that

p@rom) =T [T

p|MN

Recall from Lemma [3.1] that [['(N, MN) : I'(MN)] = M. Then

dim(M; (T'(2,2M)q) = ¢(2,2M) +

e = M T )

pIMN

Using the genus formula of modular curves [2, Theorem 3.1.1], we ob-
tain for N > 3 and M > 1:

g(N,MN) =1+ MNYMN - 6) [Ta-r.

24
plMN
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To compute £(2,2M), first observe that

r@ee2m) = | rem) (1 213)

JEL/M

Two reduced rational numbers a/c and a’/c’ lie in the same equivalence
class of cusps in P1(Q)/T'(2,2M) if and only if

a d

=3 +2j (modI'(2M)) for some j € Z/M,
if and only if [2, Proposition 3.8.3]
(a',d) = +(a+2jc,c) (mod 2M), for some j € Z/M.
A counting argument leads to
€(2,2M) =2¢(M) + ¢p(2M), M > 2.
We summarize the computations above and results in [4, Section 11]:

Proposition 3.7. Let G be a finite abelian group. Then
e When G =Cy, N >5 and N is even,

dim(M; (G)g) =1 - > > ,

pIN

Tors(M; (G)) = (Z/2)?WN)+HeN/2=1
e When G =Cy, N >5 and N is odd,

dim(M; (G)g) =1 — ¢(év) + N ';LL(N) - lg(l + %),

Tors(M; (G)) = (Z/2)%™)!
[ ] Wh€nG:CQXCQM, Mzg,

2M M?
dim(M; (G)g) = 1 — (M) — @ + = [Ja-»>,
pIMN
Tors(M; (G)) = (Z/2)?M)+e(2M)-1
L] Whe’ﬂG:CNXCMN,NZ?), MZl,
N M?N?3
M - . H (1 — p_2)

1+

dim(M; (G)o) = 25 =

pIMN
Tors(M; (G)) = 0.
o My(Cy) = My (C3) =Z/2, M;(Cy) = My (C3) = (Z/2)*.
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e M5 (G) =0 if G is not in any of the cases above.

4. DIMENSIONAL FORMULAE

Consider the natural quotient map of My(G) by relation (A)
pos Ma(G) = My (G).

In this section, we determine the QQ-rank of the kernel of p~. First, we
introduce an auxiliary group

M (G)
defined as the quotient of M;(G) = S§;(G) by the relation
(P) : {a1) = (=ar),

and denote by (a;)T € M{(G) the image of (a) € M;(G) under the
natural projection

ut o Mi(G) - M (G).
We have
7% G=Cy,N>2,
Z  G=Cy.N=12
0 otherwise.

Given a finite abelian group G and a subgroup G’ C G such that
G’ = Cy for some d € Z>, there is a map

(4.1) vg : My (G) = M7 (G @ M, _(G"),

obatined as the composition of the co-multiplication map and u*. No-
tice that v is non-trivial only when G’ is cyclic. Put

v @ e

where the sum runs through all proper cyclic subgroups (including the
trivial one) G C G. We will show that the restriction of v to

K. (G) := ker (./\/ln(G) — M;(G))
is an isomorphism over Q. Formally, consider the map
(4.2) Vi) - Kn(G) = @) MT(G) @ M, (G/G).
a'ca
We construct an inverse of v, (g over Q:

(4.3) v @ MIG) @ M, ((G/G) = Ku(G)

G'CG
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in the following way:

Let G' = Cy € G be a cyclic subgroup of G. We denote by
A A and A”

the character group of
G,G  and G/G
respectively. For any

(a)" € M{(Ca,)

and
(b1, by, ..., by1)” € M (GG,
we set
b:={b1,bs,..., b, 1},
and

w(a,b) :=={a)" @ (by,...,b_1)” € M{(G) @ M, ,(G/G).
Find an arbitrary lift ' € A of a € A" and put
Y(a,b) == (a', by, ..., by_1) + (=d', by, ..., by_1) € K,(G),
where b; are understood via the embedding A” C A. Then we define

1
(4.4) Y(w(a, b)) := 5 v(a,b).
Notice that ¢ is defined over Q. It is not hard to see that
1
(4.5) ver ( 3 ~(a,b)) = w(a,b)

and the map 1 is compatible with relations (OQ) and (M). It remains
to check that the construction is independent of the lift @’ and 1 is also
compatible with relations (P) and (A) as a homomorphism between
Q-vector spaces.

Lemma 4.1. With the notation above, the definition of v is indepen-
dent of the choice of the lift a’ of a.

Proof. Let ay,a3 € A be two lifts of a € A’, i.e., there exists g € A”
such that as = a; + g. Relations (S) and (M) imply that

(a1,b1,...) ={a1 — b1, b1,...) + {(a1,b1 — aq, .. .),
(by —ay, by, ...) = (—ay,by,...) + {a1,by —ay,...).
Taking the difference between the two lines above, one has
(a1,by,...) + (—ay,by,...) = (a1 — b1, by, ...) + (b1 — a1, by, .. .).
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[terating this process with b;, we obtain

n—1 n—1
<CZ1, bl, .. .>+(—a1, bl, .. > = <CL1—Z mibi, bl, .. >+<Z mibi—al, bl, .. >
i=1 =1

where m; € Zs¢ for all i. Since b; generate A”, we conclude that
<(11, bl, .. > + <—CL1, bl, .. > = <CL2, bl, .. > + <—CL2, bl, .. >
O

Notice that Lemma also implies that v is compatible with the
relation (P). Indeed, let @’ be a lift of a € A" in A and " a lift
of —a € A'in A. Then " = —d + ¢ for some g € A” and thus
~(a,b) = v(—a,b). The compatibility of ¢ with the relation (A) is
reduced to the following lemma.

Lemma 4.2. Let n > 2 be an integer, G be a finite abelian group and
(ay,...,a,) be any generating symbol of M,,(G), one has

Z (51a1,52a2,a3, e ,an) =0e€ Mn(G) & Q

e1,e0==%1

Proof. For simplicity, we denote the sum in the assertion by

d({ay,...,an)) == Z (e1a1, €909, a3, ..., ap).

e1,e0==*%1

Consider a group action of SLy(Z) on §({ay,...,a,)) via

(CCL Z) . 5(((11,&2, as, ... ,an>) = 5(<aa1 —+ bag,cal + dag,ag, e ,an)).

Equivalently, we can view this as an action of SLy(Z) on (GY)2. The
action is in fact trivial in M,,(G). It suffices to check this on generators

of SLy(Z):
(_0 1 (1)) and ((1) D '

By symmetry, it is clear that

d({ar,ag,...,a,)) = 0({ag, —ay, ..., a,)).
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On the other hand, one has
(a1 + ag,aq,as, ..., a,))
= (a1 + as,aq,...) + (—ay — as, —ay,...) + (a1 + as, —aq,...)+
(—ay — ag,aq,...)
applying (M) to the first two terms above
= (ay, as,...) + (a1, —ay,...) + (a1 + az, —as, .. )+
(—ay — ag, a1, ...) + (—ay — ag, as,...) + (a1 + ag, —ay, . ..)
applying (M) to the last four terms above
= (a1, a9,...) + (—a1,—ag,...) + (a1, —as,...) + (—ay,as,...)
=0({ay,as,...,a,)).

Consider

(4.6) S:=> (a,bas, ..., a),

a,b

where the sum runs over the SLy(Z)-orbit of (ay,as) in (GV)?. Observe
that the orbit is finite as G is a finite group. Applying relation (M) to
each term in the sum, one finds that

SzZ(a—b,b,ag,...,an>—|—<a,b—a,a3,...,an>
b

a’?
=2 g (a,b,as,...,a,)
a,b
since

a—b\ (1 -1 a a (1 0 a
b ) \0 1) \bp)" \b—a) \-1 1) \b)"
Similarly, averaging o over this orbit leads to
Z5((a,b,a3,...,an>)
a,b

= {a,b,...) + (—a,b,...) + (a,=b,..) + (—a,b,...)

applying (4.6)) to each term
=2-) d({a,bas, ..., a,)).
a,b
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Recall that ¢ is invariant under the SLo(Z)-action. We conclude that
d({ag,...,a,)) =0€ M,(G)® Q.
O

Proposition 4.3. The map 1 is well-defined over Q. In addition,
Vi, (@) and ¥ are inverse to each other over Q.

Proof. The correctness of ¢ is due to Lemma[d.T]and [4.2] By definition,
K. (G) is generated by

Y(a,b) = {(a,by,...,by_1) + (—a,by, ..., byp_1).
Let G’ be the subgroup of G such that

nizz)i = (G/G").

The definition of the co-multiplication map ensures that

vi,.(@)(v(a, b)) = ver (y(a, b))
and one can deduce from (4.5) that

77D o VKn(G)(7(a7 b)) = @Z)(QQ)(G, b)) = 7(0’7 b)7
where the last equality holds by Lemma [£.1] Similarly, for any
w(a,b) = {a)* @ (by,...,by_1)” € M7 (G) @ M, (G/G),

one has

Vi) 0 W(w(a, b)) = V;Cn(G)(%'y(a, B)) = wia,b).

It follows that ¢ and v, () are inverse to each other as homomorphisms
between Q-vector spaces. O

Dimensional Formulae. Proposition provides an effective com-
putation for

In particular, it implies the hypothetical formula (note that the original
formula in [4, Section 11] is wrong)

dim(M;(Cy)g) — dim(M; (Cy)g)

@ + i > b(d)g(N/d) N odd,
N>5 c§\|[N,3§d§N/3
w + i > ¢(d)$(N/d) N even.

d|N,3<d<N/3
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Combining this with Proposition we obtain an effective computa-
tion for

dlm(MQ(G)Q)

For example, when G = C), x C,,, p an odd prime, one has

dim(My(C, x C,) ® Q) — dim(Q @ M; (C, x C,)) = (p+ 1)flp —1)?

and thus

dim(M,y(C, x C,)) ® Q) =

(p = 1)(p* + 6p> —p +6)

24 ’
which is consistent with results of computer experiments recorded in
Section 2
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