MODULAR SYMBOLS AND EQUIVARIANT BIRATIONAL INVARIANTS

ZHIJIA ZHANG

ABSTRACT. We study relations between the classical modular symbols associated with congruence subgroups and Kontsevich-Pestun-Tschinkel groups $\mathcal{M}_n(G)$ associated with finite abelian groups G.

1. INTRODUCTION

Let G be a finite abelian group, acting regularly and generically freely on a smooth projective variety of dimension $n \geq 2$ over an algebraically closed field of characteristic zero. An equivariant birational invariant of such actions was introduced in [\[4\]](#page-17-0). It takes values in the abelian group

$$
\mathcal{M}_n(G),
$$

defined via explicit generators and relations. This group and its generalizations in [\[5\]](#page-17-1) encode intricate geometric information, leading to new results in equivariant birational geometry, see, e.g., [\[3\]](#page-17-2), [\[6\]](#page-17-3), [\[9\]](#page-17-4) and [\[10\]](#page-17-5). On the other hand, the simplicity of the defining relations of $\mathcal{M}_n(G)$ reveals a rich arithmetic nature: it was found in [\[4\]](#page-17-0) that $\mathcal{M}_n(G)$ carry Hecke operators, formal (co-)multiplication maps, and are closely related to Manin's modular symbols for modular forms of weight 2, when $n=2$.

In this note, we continue the investigation of arithmetic properties of $\mathcal{M}_n(G)$, with a particular focus on their relations with Manin symbols. Our main results are:

• We settle the algebraic structure of $\mathcal{M}_2^-(G)$, a quotient of the group $\mathcal{M}_2(G)$, for any finite abelian group G, see Proposition [3.7.](#page-11-0) The key ingredient is the construction of an isomorphism between $\mathcal{M}_2^-(G)$ and the Z-module of classical Manin symbols for certain congruence subgroups.

Date: July 16, 2024.

• We prove a conjecture from [\[4,](#page-17-0) Section 11] regarding the Qranks of $M_2(G) \otimes \mathbb{Q}$ when G is cyclic, and generalize the result to any finite abelian group G .

Here is the roadmap of the paper. In Section [2,](#page-1-0) we recall relevant definitions. In Section [3,](#page-5-0) we study the connections between Manin symbols and the groups $\mathcal{M}_2^-(G)$. Dimensional formulae for $\mathcal{M}_2(G) \otimes \mathbb{Q}$ are given in Section [4.](#page-12-0)

Acknowledgments: The author is grateful to Yuri Tschinkel and Brendan Hassett for many helpful conversations.

2. Background

Let G be a finite abelian group, $G^{\vee} = \text{Hom}(G, \mathbb{C}^{\times})$ its character group, n a positive integer and

$$
\mathcal{S}_n(G)
$$

the \mathbb{Z} -module freely generated by *n*-tuples of characters of G :

$$
\beta = (b_1, \dots, b_n), \text{ such that } \sum_{j=1}^n \mathbb{Z} b_j = G^{\vee}.
$$

The group $\mathcal{M}_n(G)$ is defined via the quotient

$$
\mathcal{S}_n(G) \to \mathcal{M}_n(G)
$$

by the reordering relation

(O): for all $\beta = (b_1, \ldots, b_n)$ and all $\sigma \in \mathfrak{S}_n$, one has

$$
\beta = \beta^{\sigma} := (b_{\sigma(1)}, \ldots, b_{\sigma(n)}),
$$

and the motivic blowup relation

(M): for
$$
\beta = (b_1, b_2, b_3, \dots, b_n)
$$
, one has $\beta = \beta_1 + \beta_2$, where

 $\beta_1 := (b_1 - b_2, b_2, b_3, \ldots, b_n), \quad \beta_2 := (b_1, b_2 - b_1, b_3, \ldots, b_n), \quad n \ge 2.$

A closely related group $\mathcal{M}_n^-(G)$ is defined as the quotient of $\mathcal{S}_n(G)$ by (O) , (M) and the *anti-symmetry relation* (A) :

(A): $(b_1, \ldots, b_n) = -(-b_1, \ldots, b_n)$, for all generating symbols β .

For clarity, we distinguish symbols in $\mathcal{M}_n(G)$ and $\mathcal{M}_n^-(G)$ with the following notation:

$$
\bullet \ \langle b_1, \dots, b_n \rangle \in \mathcal{M}_n(G),
$$

$$
\bullet \ \langle b_1, \ldots, b_n \rangle^- \in \mathcal{M}_n^-(G).
$$

Remark 2.1. The original definition of relation (M) in [\[4\]](#page-17-0) is more involved, but is equivalent to the version here, by [\[3,](#page-17-2) Proposition 2.1].

When $n = 1$, we have

$$
\mathcal{M}_1(G) = \begin{cases} \mathbb{Z}^{\phi(N)} & G = \mathbb{Z}/N, N \ge 1, \\ 0 & \text{otherwise,} \end{cases}
$$

where $\phi(n)$ is Euler's totient function.

When $n = 2$, $\mathcal{M}_2(G)$ can be nontrivial for cyclic and bi-cyclic groups. Below, we present results of numerical computations of Q-ranks of $\mathcal{M}_2(G)$ and $\mathcal{M}_2(G)^-$. Let

$$
\mathcal{M}_2(G)_{\mathbb{Q}} := \mathcal{M}_2(G) \otimes \mathbb{Q}, \quad \text{and} \quad \mathcal{M}_2^-(G)_{\mathbb{Q}} := \mathcal{M}_2^-(G) \otimes \mathbb{Q}.
$$

In the following tables, d and d^- denote respectively

$$
\dim_{\mathbb{Q}}(\mathcal{M}_2(G)_{\mathbb{Q}}) \quad \text{and} \quad \dim_{\mathbb{Q}}(\mathcal{M}_2^-(G)_{\mathbb{Q}}).
$$

When $G = C_N$ is cyclic, we have

When $G = C_{N_1} \times C_{N_2}$ is bi-cyclic, we have

In particular, when $G = C_p \times C_p$, for prime p, we have

It was discovered and proved in [\[4\]](#page-17-0) that

$$
\dim(\mathcal{M}_2^-(C_N)_{\mathbb{Q}}) = \begin{cases} 1 - \frac{\phi(N) + \phi(N/2)}{2} + \frac{N \cdot \phi(N)}{24} \cdot \prod_{p|N} (1 + \frac{1}{p}) & N \text{ even,} \\ 1 - \frac{\phi(N)}{2} + \frac{N \cdot \phi(N)}{24} \cdot \prod_{p|N} (1 + \frac{1}{p}) & N \text{ odd.} \end{cases}
$$

The proof is based on an isomorphism between $\mathcal{M}_2^-(C_N)_{\mathbb{Q}}$ and the space of modular symbols of the congruence subgroups $\Gamma_1(N)$. From the tables above, we speculate the following identities

$$
\dim(\mathcal{M}_2(C_p \times C_p)_{\mathbb{Q}}) \stackrel{?}{=} \frac{(p-1)(p^3 + 6p^2 - p + 6)}{24}
$$

$$
\dim(\mathcal{M}_2^-(C_p \times C_p)_{\mathbb{Q}}) \stackrel{?}{=} \frac{(p-1)(p^3 - p + 12)}{24},
$$

,

also signaling a strong connection to modular forms. The remaining part of this paper is dedicated to a proof of these two identities in the general setting.

First, observe that the common factor $(p-1)$ indicates that the structure of $\mathcal{M}_2(G)$ and $\mathcal{M}_2^-(G)$ can be simplified when G is a bicyclic group. We explain in detail the simplification for $\mathcal{M}_2^-(G)$ below. The same argument also applies to $\mathcal{M}_2(G)$.

Bi-cyclic groups. Let $G = C_N \times C_{MN}$ be a finite bi-cyclic group. By definition, the \mathbb{Z} -module $\mathcal{M}_2^-(G)$ is generated by symbols

$$
\beta := \langle (a_1, b_1), (a_2, b_2) \rangle^-
$$

such that

 $a_1, a_2 \in C_N$, $b_1, b_2 \in C_{MN}$, $\mathbb{Z}(a_1, b_1) + \mathbb{Z}(a_2, b_2) = C_N \times C_{MN}$,

and subject to relations

$$
\bullet \ \beta = \langle (a_2, b_2), (a_1, b_1) \rangle ^{-},
$$

•
$$
\beta = \langle (a_1 - a_2, b_1 - b_2), (a_2, b_2) \rangle^- + \langle (a_1, b_1), (a_2 - a_1, b_2 - b_1) \rangle^-,
$$

• $\beta = -\langle (-a_1, -b_1), (a_2, b_2) \rangle$ ⁻.

Formally, we can also denote β by a 2×2 matrix

$$
\begin{pmatrix} a_1 & a_2 \ b_1 & b_2 \end{pmatrix}
$$

and assign a determinant:

$$
\det(\beta) := a_1 b_2 - a_2 b_1 \in (\mathbb{Z}/N)^\times,
$$

where the operation takes place modulo N . From the defining relations (O), (M) and (A), one can see that the linear combinations of symbols with the same determinant up to ± 1 form a submodule of $\mathcal{M}_2^-(G)$. More precisely, for $k \in (\mathbb{Z}/N)^{\times}$, let

$$
(2.1) \tS_{2,k}(G)
$$

be the finite set consisting of matrices/symbols

$$
\beta := \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} = \langle (a_1, b_1), (a_2, b_2) \rangle^{-1}
$$

such that

- $(a_1, b_1), (a_2, b_2) \in (C_N \times C_{MN})^{\vee}$,
- $\mathbb{Z}(a_1, b_1) + \mathbb{Z}(a_2, b_2) = (C_N \times C_{MN})^{\vee},$

• det(β) = k (mod N),

and

$$
\mathcal{M}_{2,k}^{-}(G)
$$

be the Z-module freely generated by elements in the set

 $\mathcal{S}_{2,k}(G) \cup \mathcal{S}_{2-k}(G)$

subject to relations (O), (M) and (A). It follows that $\mathcal{M}_{2,k}^-(G)$ can be naturally identified as a submodule of $\mathcal{M}_2^-(G)$. Moreover, the algebraic structure of $\mathcal{M}_{2,k}^-(G)$ is independent of k: consider the maps

$$
\mathcal{M}_{2,1}^-(G) \to \mathcal{M}_{2,k}^-(G), \quad \langle (a_1, b_1), (a_2, b_2) \rangle^- \mapsto \langle (ka_1, b_1), (ka_2, b_2) \rangle^- ;
$$

$$
\mathcal{M}_{2,k}^-(G) \to \mathcal{M}_{2,1}^-(G), \quad \langle (a_1,b_1), (a_2,b_2) \rangle^- \mapsto \langle (a_1/k, b_1), (a_2/k, b_2) \rangle^-.
$$

These maps respect the defining relations and are inverse to each other. It follows that we have isomorphisms of \mathbb{Z} -modules, when $N \geq 3$:

$$
\mathcal{M}_2^-(G)\simeq\bigoplus_{k\in(\mathbb{Z}/N)^\times/\langle\pm 1\rangle}\mathcal{M}_{2,k}^-(G)\simeq\bigoplus_{\frac{\phi(N)}{2}\,\mathrm{copies}}\mathcal{M}_{2,1}^-(G).
$$

Multiplication and Co-multiplication. Given an exact sequence of finite abelian groups

$$
0 \to G' \to G \to G'' \to 0,
$$

consider the dual sequence of their character groups

$$
0 \to A'' \to A \to A' \to 0.
$$

For all integers $n = n' + n''$, $n', n'' \geq 1$, one can define a Z-bilinear multiplication map

$$
\nabla : \mathcal{M}_{n'}(G') \otimes \mathcal{M}_{n''}(G'') \to \mathcal{M}_n(G)
$$

given on the generators by

$$
\langle a'_1, \ldots, a'_{n'} \rangle \otimes \langle a''_1, \ldots, a''_{n''} \rangle \rightarrow \sum \langle a_1, \ldots, a_{n'}, a''_1, \ldots, a''_{n''} \rangle
$$

where the sum is over all possible lifts $a_i \in A$ of $a'_i \in A'$; and $a''_i \in A$ are understood via the embedding $A'' \hookrightarrow A$.

6 $\hspace{1.5cm}$ ZHIJIA ZHANG

Dual to this construction is the Z-linear *co-multiplication* map when G'' is non-trivial:

(2.2)
$$
\Delta: \mathcal{M}_n(G) \to \mathcal{M}_{n'}(G') \otimes \mathcal{M}_{n''}^-(G'').
$$

This map is defined on the generators by

$$
\langle a_1, \cdots, a_n \rangle \mapsto \sum \langle a_{I'} \mod A'' \rangle \otimes \langle a_{I''} \rangle^-,
$$

where the sum is over all partition of $\{1, \ldots, n\} = I' \cup I''$ such that

- $\#I' = n'$, $\#I'' = n''$;
- for all $j \in I'', a_j \in A'' \subset A$; and for any $i \in I'$, $a_i \mod A''$ is understood as projection of $a_i \in A$ in A/A'' ;
- the elements $a_j, j \in I''$, span A'' .

The correctness of ∇ and Δ can be verified directly [\[4\]](#page-17-0); they maps also descend to well-defined Z-module homomorphisms

$$
\nabla^-: \mathcal{M}_{n'}^-(G') \otimes \mathcal{M}_{n''}^-(G'') \to \mathcal{M}_n^-(G),
$$

$$
\Delta^-: \mathcal{M}_n^-(G) \to \mathcal{M}_{n'}^-(G') \otimes \mathcal{M}_{n''}^-(G'').
$$

3. Congruence subgroups and Modular Symbols

Congruence subgroups. Connections between $\mathcal{M}_2^-(C_N)$ and a classical congruence subgroup

$$
\Gamma_1(N) = \left\{ \gamma \in SL_2(\mathbb{Z}) : \gamma = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\}, \quad N \ge 2,
$$

were discovered in [\[4,](#page-17-0) Section 11]. To extend their results to bi-cyclic groups, we introduce a new family of congruence subgroups

(3.1)

$$
\Gamma(N, MN) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \middle| \begin{array}{l} a \equiv 1 \pmod{N} \\ b \equiv 0 \pmod{N} \\ c \equiv 0 \pmod{MN} \\ d \equiv 1 \pmod{MN} \end{array} \right\}, \quad N \ge 2.
$$

To see that $\Gamma(N, MN)$ is indeed a congruence subgroup, one can check that the definition [\(3.1\)](#page-5-1) forces

$$
a \equiv 1 \mod MN,
$$

leading to an equivalent description of $\Gamma(N, MN)$: (3.2)

$$
\Gamma(N, MN) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \middle| \begin{array}{l} a \equiv 1 \pmod{MN} \\ b \equiv 0 \pmod{N} \\ c \equiv 0 \pmod{MN} \\ d \equiv 1 \pmod{MN} \end{array} \right\}, \quad N \ge 2.
$$

Using [\(3.2\)](#page-6-0), one can easily verify the following inclusion relations

$$
SL_2(\mathbb{Z}) \supset \Gamma_1(MN) \supset \Gamma(N, MN) \supset \Gamma(MN)
$$

and conclude that $\Gamma(N, MN)$ is a congruence subgroup.

Lemma 3.1. $[\Gamma(N, MN) : \Gamma(MN)] = M$.

Proof. Consider the surjective group homomorphism:

$$
\Gamma(N, MN) \to \mathbb{Z}/M\mathbb{Z}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{b}{N} \pmod{M}.
$$

The kernel of the homomorphism is $\Gamma(MN)$. In particular,

$$
\Gamma(N, MN)/\Gamma(MN) \simeq \mathbb{Z}/m\mathbb{Z}.
$$

□

To study the space of Manin symbols associated with $\Gamma(N, MN)$, one needs a description of the right cosets $\Gamma(N, MN) \setminus SL_2(\mathbb{Z})$. Now, we show that $\Gamma(N, MN)\backslash SL_2(\mathbb{Z})$ coincides with the set $\mathcal{S}_{2,1}(C_N \times C_{MN})$ introduced in [\(2.1\)](#page-3-0). Consider a natural map:

(3.3)
$$
\Gamma(N, MN) \setminus SL_2(\mathbb{Z}) \to S_{2,1}(C_N \times C_{MN}),
$$

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & \text{mod } N & b \text{ mod } N \\ c & \text{mod } MN & d \text{ mod } MN \end{pmatrix}.
$$

The correctness of [\(3.3\)](#page-6-1) as a bijection between finite sets follows from elementary computations. Moreover, we have the following lemmas.

Lemma 3.2. For
$$
\gamma_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \in SL_2(\mathbb{Z}), i = 1, 2
$$
, one has
\n
$$
\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \equiv \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \pmod{\Gamma(N, MN)}
$$
\nif and only if
$$
\begin{cases} a_1 \equiv a_2 \pmod{N}, & c_1 \equiv c_2 \pmod{MN}, \\ b_1 \equiv b_2 \pmod{N}, & d_1 \equiv d_2 \pmod{MN}. \end{cases}
$$

Proof. Basic modular arithmetic, as in $[1, \text{Lemma } 3.1].$

$$
\qquad \qquad \Box
$$

Lemma 3.3. Let $\begin{pmatrix} a & b \ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$, and $a', b', c', d' \in \mathbb{Z}$ such that

$$
\begin{cases}\na' \equiv a \pmod{N}, & c' \equiv c \pmod{MN}, \\
b' \equiv b \pmod{N}, & d' \equiv d \pmod{MN},\n\end{cases}
$$

with $0 \leq a', b' < N$ and $0 \leq c', d' < MN$. Then we have

$$
\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in \mathcal{S}_{2,1}(C_N \times C_{MN}).
$$

Proof. It suffices to check $\mathbb{Z}(a', c') + \mathbb{Z}(b', d') = C_N \times C_{MN}$. Indeed,

$$
\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} a'd - b'c & -a'b + ab' \\ c'd - d'c & -c'b + ad' \end{pmatrix} \in \Gamma(N, MN),
$$

since $ad-bc=1$. This shows (a', c') and (b', d') generate the generators $(0, 1)$ and $(1, 0) \in C_N \times C_{MN}$.

Proposition 3.4. The map [\(3.3\)](#page-6-1) is a well-defined bijection between finite sets.

Proof. Lemmas [3.2](#page-6-2) and [3.3](#page-7-0) implies [\(3.3\)](#page-6-1) is a well-defined injection. It suffices to show it is also surjective. Let

$$
\beta = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{S}_{2,1}(C_N \times C_{MN}).
$$

By definition, one has $ad - bc = 1 + l_1N$ for some l_1 . The generating condition implies that $gcd(c, d, M) = 1$. So there exists $k_1, k_2 \in C_M$ such that

$$
k_1d - k_2c = -l_1 \pmod{M}.
$$

Put

$$
\gamma = \begin{pmatrix} a + k_1 N & b + k_2 N \\ c & d \end{pmatrix},
$$

One computes that $\det(\gamma) \equiv 1 \pmod{MN}$, i.e., $\gamma \in SL_2(\mathbb{Z}/MN)$. Let $\overline{\gamma}$ be a lift of γ in $SL_2(\mathbb{Z})$ under the surjection $SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/MN)$. The lift $\overline{\gamma}$ is mapped to β under the map [\(3.3\)](#page-6-1), proving surjectivity. \Box Modular symbols. We follow Manin's definition of modular symbols [\[7,](#page-17-7) Section 1.7]. Given the bijection [\(3.3\)](#page-6-1), the space $\mathbb{M}_2(\Gamma(N, MN))$ of modular symbols of weight 2 for $\Gamma(N, MN)$ is defined via generators

$$
\begin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathcal{S}_{2,1}(C_N \times C_{MN})
$$

subject to relations

(1)
$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} b & -a \\ d & -c \end{pmatrix} = 0,
$$

\n(2)
$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a+b & -a \\ c+d & -c \end{pmatrix} + \begin{pmatrix} b & -a-b \\ d & -c-d \end{pmatrix} = 0,
$$

\n(3)
$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0
$$
 if
$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} b & -a \\ d & -c \end{pmatrix}
$$
 or
$$
\begin{pmatrix} a+b & -a \\ c+d & -c \end{pmatrix}.
$$

Relation (3) guarantees that the space of modular symbols is torsionfree. But for $\Gamma(N, MN)$, relation (3) is redundant as the condition in (3) is never satisfied. Using relation (1) , relation (2) can be rewritten:

$$
0 \stackrel{(2)}{=} \begin{pmatrix} b & -a \\ d & -c \end{pmatrix} + \begin{pmatrix} b-a & -b \\ d-c & -d \end{pmatrix} + \begin{pmatrix} -a & a-b \\ -c & c-d \end{pmatrix}
$$

$$
\stackrel{(1)}{=} -\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a-b & b \\ c-d & d \end{pmatrix} + \begin{pmatrix} a & b-a \\ c & d-c \end{pmatrix}.
$$

Equivalently, one can rewrite defining relations of $\mathbb{M}_2(\Gamma(N, MN))$ as

$$
\begin{aligned} \n\textbf{(R1)} \, \begin{pmatrix} a & b \\ c & d \end{pmatrix} &= -\begin{pmatrix} b & -a \\ d & -c \end{pmatrix}, \\ \n\textbf{(R2)} \, \begin{pmatrix} a & b \\ c & d \end{pmatrix} &= \begin{pmatrix} a-b & b \\ c-d & d \end{pmatrix} + \begin{pmatrix} a & b-a \\ c & d-c \end{pmatrix}. \n\end{aligned}
$$

Proposition 3.5. The \mathbb{Z} -modules $\mathcal{M}_{2,1}^-(C_N \times C_{MN})$ and $\mathbb{M}_2(\Gamma(N, MN))$ are isomorphic when $N \in \mathbb{Z}_{\geq 2}$ and $\overrightarrow{M} \in \mathbb{Z}_{\geq 1}$.

Proof. When $N > 2$, consider the map

(3.4)
$$
\mathcal{M}_{2,1}(C_N \times C_{MN}) \to M_2(\Gamma(N, MN)),
$$

\n
$$
\langle (a_1, b_1), (a_2, b_2) \rangle \longrightarrow \begin{cases}\begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} & \text{if } a_1b_2 - a_2b_1 = 1 \pmod{N}, \\ \begin{pmatrix} a_2 & a_1 \\ b_2 & b_1 \end{pmatrix} & \text{if } a_1b_2 - a_2b_1 = -1 \pmod{N}.\end{cases}
$$

The correctness of the map [\(3.4\)](#page-8-0) can be verified directly:

- It is compatible with the relation (O) by construction.
- Relation (M) is identical to relation (R2) and preserves the determinants of the symbols.
- It is compatible with relation (A) due to the defining relation $(R1)$ of $M_2(\Gamma(N, MN))$.

Similarly, one can check that the map given by

$$
\mathbb{M}_2(\Gamma(N, MN)) \to \mathcal{M}_{2,1}^-(C_N \times C_{MN}), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \langle (a, c), (b, d) \rangle^-
$$

is a well-defined inverse homomorphism to (3.4) . \Box

When $N = 2$, the map [\(3.4\)](#page-8-0) in the proof above is not well-defined as ± 1 are not distinguishable modulo 2. But in this case, the generating sets of $\mathcal{M}_2^-(C_2 \times C_{2M})$ and $\mathbb{M}_2(\Gamma(2, 2M))$ coincide: $\mathcal{S}_2(C_2 \times C_{2M})$ is simply the free Z-module generated by elements in $\mathcal{S}_{2,1}(C_2 \times C_{2M})$. We can then consider the Z-module

$$
\mathbb{M}_2^-(\Gamma(2,2M))
$$

defined as the quotient of $\mathcal{S}_2(C_2 \times C_{2M})$ by relations (R1) and (R2), i.e., the quotient of $M_2(\Gamma(2, 2M))$ by

$$
(\mathbf{O}): \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} b & a \\ d & c \end{pmatrix}.
$$

Proposition 3.6. The Z-modules $\mathcal{M}_2^-(C_2 \times C_{2M})$ and $\mathbb{M}_2^-(\Gamma(2, 2M))$ are isomorphic for all integers $M \in \mathbb{Z}_{\geq 1}$.

Proof. With the presence of (O) , the relation $(R1)$ is identical to (A) . It follows that relations $(R1)$ and $(R2)$ generate the same submodule of $S_2(C_2 \times C_{2M})$ as (M) and (A) does.

It is classically known that $M_2(\Gamma(N, MN))$ can be identified as

$$
H_1(\overline{X(N, MN)}, \mathbb{Z}),
$$

the first homology group of the complex modular curve $X(N, MN)$ compactified with respect to the cusps [\[7,](#page-17-7) Theorem 1.9]. We follow definitions in [\[8,](#page-17-8) Chapter 1.3]:

- $X(N, MN) := \Gamma(N, MN)$, where h is the upper half-plane,
- $\mathbb{P}^1(\mathbb{Q}) := \mathbb{Q} \cup \{\infty\}$, cusps are the elements of $\mathbb{P}^1(\mathbb{Q})/\Gamma(N, MN)$,
- $\mathfrak{h}^* := \mathfrak{h} \cup \mathbb{P}^1(\mathbb{Q})$ is the extended upper half-plane,
- $\bullet \ \overline{X(N, MN)} := \Gamma(N, MN) \backslash \mathfrak{h}^*.$

In particular, a symbol $\begin{pmatrix} a & b \ c & d \end{pmatrix}$ corresponds to the image in $X(N, MN)$ of the geodesic path from a/c to b/d , where a, b, c and d are naturally considered as integers. Moreover, $M_2^-(\Gamma(2, 2M))$ can be identified as the (-1) -eigenspace of the antiholomorphic involution on $X(2, 2M)$ given by the map $\tau \mapsto -\bar{\tau}, \tau \in \mathcal{H}$, on the universal cover. On modular symbols, ι takes the form

$$
\iota: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} \stackrel{\textbf{(R1)}}{=} -\begin{pmatrix} -b & -a \\ d & c \end{pmatrix} \stackrel{\text{mod } 2}{=} -\begin{pmatrix} b & a \\ d & c \end{pmatrix}.
$$

This forces a 2-torsion in $\mathbb{M}_{2}^{-}(\Gamma(2, 2M))$ each time a cusp different from ∞ is fixed by ι .

Concretely, these imply that

(3.5)
$$
\dim(\mathbb{M}_2(\Gamma(N, MN)) \otimes) = 2g(N, MN) + \varepsilon_\infty(N, MN) - 1,
$$

$$
\dim(\mathbb{M}_2^-(\Gamma(2, 2M)) \otimes) = g(2, 2M) + \frac{\varepsilon_\infty(2, 2M) - \varepsilon(2, 2M)}{2},
$$

$$
\text{Tors}(\mathbb{M}_2(\Gamma(N, MN)) = 0, \text{ Tors}(\mathbb{M}_2^-(\Gamma(2, 2M))) = (\mathbb{Z}/2)^{\varepsilon(2, 2M) - 1},
$$

where

- $g(N, MN)$ is the genus of $\overline{X(N, MN)}$ as a compact Riemann surface,
- $\varepsilon_{\infty}(N, MN)$ is the number of cusps, i.e., the cardinality of $\mathbb{P}^1(\mathbb{Q})/\Gamma(N, MN).$
- $\varepsilon(2, 2M)$ is the number of cusps fixed by the anti-holomorphic involution on $X(2, 2M)$.
- Tors refers to the torsion subgroup.

We compute each term appearing in [\(3.5\)](#page-10-0). It is well-known that

$$
|\mathbb{P}^1(\mathbb{Q})/\Gamma(MN)| = \frac{M^2N^2}{2} \cdot \prod_{p|MN} (1 - p^{-2}).
$$

Recall from Lemma [3.1](#page-6-3) that $[\Gamma(N, MN) : \Gamma(MN)] = M$. Then

$$
\varepsilon_{\infty}(N, MN) = \frac{MN^2}{2} \cdot \prod_{p|MN} (1 - p^{-2}).
$$

Using the genus formula of modular curves [\[2,](#page-17-9) Theorem 3.1.1], we obtain for $N \geq 3$ and $M \geq 1$:

$$
g(N, MN) = 1 + \frac{MN^{2}(MN - 6)}{24} \cdot \prod_{p|MN} (1 - p^{-2}).
$$

To compute $\varepsilon(2, 2M)$, first observe that

$$
\Gamma(2, 2M) = \bigcup_{j \in \mathbb{Z}/M} \Gamma(2M) \cdot \begin{pmatrix} 1 & 2j \\ 0 & 1 \end{pmatrix}.
$$

Two reduced rational numbers a/c and a'/c' lie in the same equivalence class of cusps in $\mathbb{P}^1(\mathbb{Q})/\Gamma(2, 2M)$ if and only if

$$
\frac{a}{c} \equiv \frac{a'}{c'} + 2j \pmod{\Gamma(2M)} \text{ for some } j \in \mathbb{Z}/M,
$$

if and only if [\[2,](#page-17-9) Proposition 3.8.3]

$$
(a', c') \equiv \pm(a + 2jc, c) \pmod{2M}, \text{ for some } j \in \mathbb{Z}/M.
$$

A counting argument leads to

$$
\varepsilon(2, 2M) = 2\phi(M) + \phi(2M), \quad M > 2.
$$

We summarize the computations above and results in [\[4,](#page-17-0) Section 11]:

Proposition 3.7. Let G be a finite abelian group. Then

• When $G = C_N$, $N \geq 5$ and N is even,

$$
\dim(\mathcal{M}_2^-(G)_{\mathbb{Q}}) = 1 - \frac{\phi(N) + \phi(N/2)}{2} + \frac{N \cdot \phi(N)}{24} \cdot \prod_{p|N} (1 + \frac{1}{p}),
$$

$$
\text{Tors}(\mathcal{M}_2^-(G)) = (\mathbb{Z}/2)^{\phi(N) + \phi(N/2) - 1}.
$$

• When
$$
G = C_N
$$
, $N \ge 5$ and N is odd,
\n
$$
\dim(\mathcal{M}_2^-(G)_{\mathbb{Q}}) = 1 - \frac{\phi(N)}{2} + \frac{N \cdot \phi(N)}{24} \cdot \prod_{i=1}^N (1 + \frac{1}{p})
$$

$$
\operatorname{Tors}(\mathcal{M}_2^-(G)) = (\mathbb{Z}/2)^{\phi(N)-1}.
$$

p),

• When
$$
G = C_2 \times C_{2M}
$$
, $M \ge 3$,
\n
$$
\dim(\mathcal{M}_2^-(G)_{\mathbb{Q}}) = 1 - \phi(M) - \frac{\phi(2M)}{2} + \frac{M^2}{3} \cdot \prod_{p \mid MN} (1 - p^{-2}),
$$

$$
Tors(M_2^-(G)) = (\mathbb{Z}/2)^{2\phi(M) + \phi(2M) - 1}.
$$

• When
$$
G = C_N \times C_{MN}
$$
, $N \ge 3$, $M \ge 1$,

$$
\dim(\mathcal{M}_2^-(G)_{\mathbb{Q}}) = \frac{\phi(N)}{2} \left(1 + \frac{M^2 N^3}{12} \cdot \prod_{p \mid MN} (1 - p^{-2}) \right),
$$

$$
\text{Tors}(\mathcal{M}_2^-(G)) = 0.
$$

• $\mathcal{M}_2^-(C_2) = \mathcal{M}_2^-(C_3) = \mathbb{Z}/2, \quad \mathcal{M}_2^-(C_4) = \mathcal{M}_2^-(C_2^2) = (\mathbb{Z}/2)^2.$

• $\mathcal{M}_2^-(G) = 0$ if G is not in any of the cases above.

4. Dimensional Formulae

Consider the natural quotient map of $\mathcal{M}_2(G)$ by relation (A)

$$
\mu^-: \mathcal{M}_2(G) \to \mathcal{M}_2^-(G).
$$

In this section, we determine the Q-rank of the kernel of μ^- . First, we introduce an auxiliary group

$$
\mathcal{M}_1^+(G)
$$

defined as the quotient of $\mathcal{M}_1(G) = \mathcal{S}_1(G)$ by the relation

$$
(\mathbf{P}):\langle a_1\rangle=\langle -a_1\rangle,
$$

and denote by $\langle a_1 \rangle^+ \in \mathcal{M}_1^+(G)$ the image of $\langle a \rangle \in \mathcal{M}_1(G)$ under the natural projection

$$
\mu^+ : \mathcal{M}_1(G) \to \mathcal{M}_1^+(G).
$$

We have

$$
\mathcal{M}_1^+(G) = \begin{cases} \mathbb{Z}^{\frac{\phi(N)}{2}} & G = C_N, N > 2, \\ \mathbb{Z} & G = C_N, N = 1, 2, \\ 0 & \text{otherwise.} \end{cases}
$$

Given a finite abelian group G and a subgroup $G' \subsetneq G$ such that $G' = C_d$ for some $d \in \mathbb{Z}_{\geq 1}$, there is a map

(4.1)
$$
\nu_{G'} : \mathcal{M}_n(G) \to \mathcal{M}_1^+(G') \otimes \mathcal{M}_{n-1}^-(G''),
$$

obatined as the composition of the co-multiplication map and μ^+ . Notice that $\nu_{G'}$ is non-trivial only when G' is cyclic. Put

$$
\nu:=\bigoplus_{G'\subsetneq G}\nu_{G'},
$$

where the sum runs through all proper cyclic subgroups (including the trivial one) $G' \subsetneq G$. We will show that the restriction of ν to

$$
\mathcal{K}_n(G) := \ker \left(\mathcal{M}_n(G) \to \mathcal{M}_n^-(G)\right)
$$

is an isomorphism over Q. Formally, consider the map

(4.2)
$$
\nu_{\mathcal{K}_n(G)} : \mathcal{K}_n(G) \to \bigoplus_{G' \subsetneq G} \mathcal{M}_1^+(G') \otimes \mathcal{M}_{n-1}^-(G/G').
$$

We construct an inverse of $\nu_{\mathcal{K}_n(G)}$ over \mathbb{Q} :

(4.3)
$$
\psi : \bigoplus_{G' \subsetneq G} \mathcal{M}_1^+(G') \otimes \mathcal{M}_{n-1}^-(G/G') \to \mathcal{K}_n(G)
$$

in the following way:

Let $G' = C_d \subsetneq G$ be a cyclic subgroup of G. We denote by $A, A',$ and A''

the character group of

$$
G, G', \text{and } G/G'
$$

respectively. For any

$$
\langle a \rangle^+ \in \mathcal{M}_1^+(C_{d_i})
$$

and

$$
\langle b_1, b_2, \ldots, b_{n-1} \rangle^- \in \mathcal{M}_{n-1}^-(G/G'),
$$

we set

$$
\bm{b} := \{b_1, b_2, \ldots, b_{n-1}\},\
$$

and

$$
\boldsymbol{\omega}(a,\boldsymbol{b}):=\langle a\rangle^+\otimes\langle b_1,\ldots,b_{n-1}\rangle^-\in\mathcal{M}_1^+(G')\otimes\mathcal{M}_{n-1}^-(G/G').
$$

Find an arbitrary lift $a' \in A$ of $a \in A'$ and put

$$
\boldsymbol{\gamma}(a,\boldsymbol{b}):=\langle a',b_1,\ldots,b_{n-1}\rangle+\langle -a',b_1,\ldots,b_{n-1}\rangle\in\mathcal{K}_n(G),
$$

where b_i are understood via the embedding $A'' \subset A$. Then we define

(4.4)
$$
\psi(\boldsymbol{\omega}(a,\boldsymbol{b})) := \frac{1}{2}\boldsymbol{\gamma}(a,\boldsymbol{b}).
$$

Notice that ψ is defined over Q. It is not hard to see that

(4.5)
$$
\nu_{G'}(\frac{1}{2}\boldsymbol{\gamma}(a,\boldsymbol{b})) = \boldsymbol{\omega}(a,\boldsymbol{b})
$$

and the map ψ is compatible with relations (O) and (M). It remains to check that the construction is independent of the lift a' and ψ is also compatible with relations (P) and (A) as a homomorphism between Q-vector spaces.

Lemma 4.1. With the notation above, the definition of ψ is independent of the choice of the lift a' of a.

Proof. Let $a_1, a_2 \in A$ be two lifts of $a \in A'$, i.e., there exists $g \in A''$ such that $a_2 = a_1 + g$. Relations (S) and (M) imply that

$$
\langle a_1, b_1, \ldots \rangle = \langle a_1 - b_1, b_1, \ldots \rangle + \langle a_1, b_1 - a_1, \ldots \rangle,
$$

$$
\langle b_1 - a_1, b_1, \ldots \rangle = \langle -a_1, b_1, \ldots \rangle + \langle a_1, b_1 - a_1, \ldots \rangle.
$$

Taking the difference between the two lines above, one has

$$
\langle a_1, b_1, \ldots \rangle + \langle -a_1, b_1, \ldots \rangle = \langle a_1 - b_1, b_1, \ldots \rangle + \langle b_1 - a_1, b_1, \ldots \rangle.
$$

Iterating this process with b_i , we obtain

$$
\langle a_1, b_1, \ldots \rangle + \langle -a_1, b_1, \ldots \rangle = \langle a_1 - \sum_{i=1}^{n-1} m_i b_i, b_1, \ldots \rangle + \langle \sum_{i=1}^{n-1} m_i b_i - a_1, b_1, \ldots \rangle
$$

where $m_i \in \mathbb{Z}_{\geq 0}$ for all *i*. Since b_i generate A'' , we conclude that

$$
\langle a_1, b_1, \ldots \rangle + \langle -a_1, b_1, \ldots \rangle = \langle a_2, b_1, \ldots \rangle + \langle -a_2, b_1, \ldots \rangle.
$$

Notice that Lemma [4.1](#page-13-0) also implies that ψ is compatible with the relation (P). Indeed, let a' be a lift of $a \in A'$ in A and a'' a lift of $-a \in A'$ in A. Then $a'' = -a' + g$ for some $g \in A''$ and thus $\gamma(a, b) = \gamma(-a, b)$. The compatibility of ψ with the relation (A) is reduced to the following lemma.

Lemma 4.2. Let $n \geq 2$ be an integer, G be a finite abelian group and $\langle a_1, \ldots, a_n \rangle$ be any generating symbol of $\mathcal{M}_n(G)$, one has

$$
\sum_{\varepsilon_1,\varepsilon_2=\pm 1} \langle \varepsilon_1 a_1,\varepsilon_2 a_2,a_3,\ldots,a_n \rangle = 0 \in \mathcal{M}_n(G) \otimes \mathbb{Q}.
$$

Proof. For simplicity, we denote the sum in the assertion by

$$
\delta(\langle a_1,\ldots,a_n\rangle):=\sum_{\varepsilon_1,\varepsilon_2=\pm 1}\langle \varepsilon_1a_1,\varepsilon_2a_2,a_3,\ldots,a_n\rangle.
$$

Consider a group action of $SL_2(\mathbb{Z})$ on $\delta(\langle a_1, \ldots, a_n \rangle)$ via

$$
\begin{pmatrix} a & b \ c & d \end{pmatrix} \cdot \delta(\langle a_1, a_2, a_3, \ldots, a_n \rangle) = \delta(\langle aa_1 + ba_2, ca_1 + da_2, a_3, \ldots, a_n \rangle).
$$

Equivalently, we can view this as an action of $SL_2(\mathbb{Z})$ on $(G^{\vee})^2$. The action is in fact trivial in $\mathcal{M}_n(G)$. It suffices to check this on generators of $SL_2(\mathbb{Z})$:

$$
\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
$$

By symmetry, it is clear that

$$
\delta(\langle a_1, a_2, \ldots, a_n \rangle) = \delta(\langle a_2, -a_1, \ldots, a_n \rangle).
$$

On the other hand, one has

$$
\delta(\langle a_1 + a_2, a_1, a_3, \dots, a_n \rangle)
$$
\n
$$
= \langle a_1 + a_2, a_1, \dots \rangle + \langle -a_1 - a_2, -a_1, \dots \rangle + \langle a_1 + a_2, -a_1, \dots \rangle + \langle -a_1 - a_2, a_1, \dots \rangle
$$
\n
$$
\langle -a_1 - a_2, a_1, \dots \rangle
$$
\n
$$
applying (\mathbf{M}) to the first two terms above
$$
\n
$$
= \langle a_1, a_2, \dots \rangle + \langle -a_1, -a_2, \dots \rangle + \langle a_1 + a_2, -a_2, \dots \rangle + \langle -a_1 - a_2, a_1, \dots \rangle + \langle -a_1 - a_2, a_2, \dots \rangle + \langle a_1 + a_2, -a_1, \dots \rangle
$$
\n
$$
applying (\mathbf{M}) to the last four terms above
$$
\n
$$
= \langle a_1, a_2, \dots \rangle + \langle -a_1, -a_2, \dots \rangle + \langle a_1, -a_2, \dots \rangle + \langle -a_1, a_2, \dots \rangle
$$
\n
$$
= \delta(\langle a_1, a_2, \dots, a_n \rangle).
$$

Consider

(4.6)
$$
S := \sum_{a,b} \langle a, b, a_3, \dots, a_n \rangle,
$$

where the sum runs over the $SL_2(\mathbb{Z})$ -orbit of (a_1, a_2) in $(G^{\vee})^2$. Observe that the orbit is finite as G is a finite group. Applying relation (M) to each term in the sum, one finds that

$$
S = \sum_{a,b} \langle a - b, b, a_3, \dots, a_n \rangle + \langle a, b - a, a_3, \dots, a_n \rangle
$$

=
$$
2 \sum_{a,b} \langle a, b, a_3, \dots, a_n \rangle
$$

since

$$
\begin{pmatrix} a-b \\ b \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix}, \quad \begin{pmatrix} a \\ b-a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix}.
$$

Similarly, averaging δ over this orbit leads to

$$
\sum_{a,b} \delta(\langle a, b, a_3, \dots, a_n \rangle)
$$

= $\sum_{a,b} \langle a, b, \dots \rangle + \langle -a, b, \dots \rangle + \langle a, -b, \dots \rangle + \langle -a, b, \dots \rangle$
applying (4.6) to each term
= $2 \cdot \sum_{a,b} \delta(\langle a, b, a_3, \dots, a_n \rangle).$

Recall that δ is invariant under the $SL_2(\mathbb{Z})$ -action. We conclude that

$$
\delta(\langle a_1,\ldots,a_n\rangle)=0\in\mathcal{M}_n(G)\otimes\mathbb{Q}.
$$

Proposition 4.3. The map ψ is well-defined over \mathbb{Q} . In addition, $\nu_{\mathcal{K}_n(G)}$ and ψ are inverse to each other over Q.

Proof. The correctness of ψ is due to Lemma [4.1](#page-13-0) and [4.2.](#page-14-0) By definition, $\mathcal{K}_n(G)$ is generated by

$$
\boldsymbol{\gamma}(a,\boldsymbol{b})=\langle a,b_1,\ldots,b_{n-1}\rangle+\langle -a,b_1,\ldots,b_{n-1}\rangle.
$$

Let G' be the subgroup of G such that

$$
\sum_{i=1}^{n-1} \mathbb{Z}b_i = (G/G')^{\vee}.
$$

The definition of the co-multiplication map ensures that

 $\nu_{\mathcal{K}_n(G)}(\boldsymbol{\gamma}(a,\boldsymbol{b})) = \nu_{G'}(\boldsymbol{\gamma}(a,\boldsymbol{b}))$

and one can deduce from [\(4.5\)](#page-13-1) that

$$
\psi \circ \nu_{\mathcal{K}_n(G)}(\boldsymbol{\gamma}(a,\boldsymbol{b})) = \psi(2\,\boldsymbol{\omega}(a,\boldsymbol{b})) = \boldsymbol{\gamma}(a,\boldsymbol{b}),
$$

where the last equality holds by Lemma [4.1.](#page-13-0) Similarly, for any

$$
\boldsymbol{\omega}(a,\boldsymbol{b})=\langle a\rangle^+\otimes\langle b_1,\ldots,b_{n-1}\rangle^-\in\mathcal{M}_1^+(G')\otimes\mathcal{M}_{n-1}^-(G/G'),
$$

one has

$$
\nu_{\mathcal{K}_n(G)}\circ\psi(\boldsymbol{\omega}(a,\boldsymbol{b}))=\nu_{\mathcal{K}_n(G)}(\frac{1}{2}\boldsymbol{\gamma}(a,\boldsymbol{b}))=\boldsymbol{\omega}(a,\boldsymbol{b}).
$$

It follows that ψ and $\nu_{\mathcal{K}_n(G)}$ are inverse to each other as homomorphisms between $\mathbb{Q}\text{-vector spaces.}$

Dimensional Formulae. Proposition [4.3](#page-16-0) provides an effective computation for

$$
\dim(\mathcal{M}_n(G)_{\mathbb{Q}}) - \dim(\mathcal{M}_n^-(G)_{\mathbb{Q}}).
$$

In particular, it implies the hypothetical formula (note that the original formula in [\[4,](#page-17-0) Section 11] is wrong)

$$
\dim(\mathcal{M}_2(C_N)_{\mathbb{Q}}) - \dim(\mathcal{M}_2^-(C_N)_{\mathbb{Q}})
$$
\n
$$
\sum_{N \geq 5} \begin{cases}\n\frac{\phi(N)}{2} + \frac{1}{4} \sum_{\substack{d|N, 3 \leq d \leq N/3 \\ 2}} \phi(d)\phi(N/d) & N \text{ odd,} \\
\frac{\phi(N) + \phi(\frac{N}{2})}{2} + \frac{1}{4} \sum_{\substack{d|N, 3 \leq d \leq N/3 \\ 2}} \phi(d)\phi(N/d) & N \text{ even.} \n\end{cases}
$$

□

Combining this with Proposition [3.7,](#page-11-0) we obtain an effective computation for

$$
\dim(\mathcal{M}_2(G)_{\mathbb{Q}}).
$$

For example, when $G = C_p \times C_p$, p an odd prime, one has

$$
\dim(\mathcal{M}_2(C_p \times C_p) \otimes \mathbb{Q}) - \dim(\mathbb{Q} \otimes \mathcal{M}_2^-(C_p \times C_p)) = \frac{(p+1)(p-1)^2}{4}
$$

and thus

$$
\dim(\mathcal{M}_2(C_p \times C_p) \otimes \mathbb{Q}) = \frac{(p-1)(p^3 + 6p^2 - p + 6)}{24},
$$

which is consistent with results of computer experiments recorded in Section [2.](#page-1-0)

REFERENCES

- [1] John E. Cremona. Modular symbols for $\Gamma_1(N)$ and elliptic curves with everywhere good reduction. *Math. Proc. Cambridge Philos. Soc.*, $111(2):199-218$, 1992.
- [2] Fred Diamond and Jerry Shurman. A first course in modular forms, volume 228 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2005.
- [3] Brendan Hassett, Andrew Kresch, and Yuri Tschinkel. Symbols and equivariant birational geometry in small dimensions. In Rationality of varieties, volume 342 of *Progr. Math.*, pages 201–236. Birkhäuser/Springer, Cham, 2021.
- [4] Maxim Kontsevich, Vasily Pestun, and Yuri Tschinkel. Equivariant birational geometry and modular symbols. J. Eur. Math. Soc. (JEMS), 25(1):153–202, 2023.
- [5] Andrew Kresch and Yuri Tschinkel. Equivariant birational types and Burnside volume. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 23(2):1013–1052, 2022.
- [6] Andrew Kresch and Yuri Tschinkel. Equivariant Burnside groups and representation theory. Selecta Math. (N.S.), 28(4):Paper No. 81, 39, 2022.
- [7] Yuri I. Manin. Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR Ser. Mat., 36:19–66, 1972.
- [8] Goro Shimura. Introduction to the arithmetic theory of automorphic functions. Kanˆo Memorial Lectures, No. 1. Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971.
- [9] Yuri Tschinkel, Kaiqi Yang, and Zhijia Zhang. Combinatorial Burnside groups. Res. Number Theory, 8(2):Paper No. 33, 2022.
- [10] Yuri Tschinkel, Kaiqi Yang, and Zhijia Zhang. Equivariant birational geometry of linear actions, 2023. arXiv:2302.02296.

Courant Institute, 251 Mercer Street, New York, NY 10012, USA Email address: zhijia.zhang@cims.nyu.edu