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Abstract. We study the structure of combinatorial Burnside groups,
which receive equivariant birational invariants of actions of finite
groups on algebraic varieties.

1. Introduction

Let G be a finite group, acting regularly and generically freely on a
smooth projective variety over an algebraically closed field k, of char-
acteristic zero. The study of such actions, up to G-equivariant bira-
tionality, is a classical and active area in higher-dimensional algebraic
geometry (see, e.g., [16], [4], [14]). A new type of birational invariants
of G-actions was introduced in [8]. These take values in the Burnside
group

Burnn(G),

defined by explicit generators and relations. The invariant is computed
on an appropriate birational model X (standard form), where

• all stabilizers are abelian,
• a translate of an irreducible component of a locus with nontriv-

ial stabilizer is either equal to it or is disjoint from it.

The invariant takes into account information about

• subvarieties F ⊂ X with nontrivial (abelian) stabilizers H,
• the induced action of a subgroup of the centralizer ZG(H) of H

on F , and
• the representation of H in the normal bundle to F .

Formally, the class
[X ý G] ∈ Burnn(G)

of a regular G-action on a smooth projective variety X in standard
form is written as

[X ý G] :=
∑
H⊆G

∑
F

(H, Y ýK(F ), β),
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where H runs over (conjugacy classes of) abelian subgroups of G, F is
a stratum whose components have generic stabilizers (conjugated to)
H, Y records the action on F , and β is the collection of weights of H in
the normal bundle of the stratum (see [8, Definition 4.4] or [5, Section
7]). The symbols

(H,Y ýK(F ), β)

are generators of Burnn(G), and the defining relations insure that

[X ý G]− [X̃ ý G] = 0 ∈ Burnn(G),

for every equivariant blowup X̃ → X. Basic geometric operations such
as restriction to subgroups G′ ⊆ G, products of varieties, fibrations,
etc. have natural realizations on the level of Burnside groups, see [12].

A purely combinatorial version of these constructions was introduced
in [12]. It keeps track of the group-theoretic information extracted as
above, while forgetting the field-theoretic information, i.e., the bira-
tional type of the action on irreducible components of loci with non-
trivial stabilizers.

Formally, combinatorial birational invariants of G-actions on alge-
braic varieties of dimension n take values in the combinatorial Burnside
group

BCn(G),

defined via generators and relations in Section 4. The class

[X ý G] :=
∑
H

∑
F

(H,Y, β) ∈ BCn(G)

of a G-action is computed as above. Here, the symbol (H, Y, β) is a
generator of BCn(G) and the defining relations reflect the invariance of
the class under equivariant blowups.

When G is abelian, there is a surjective homomorphism

BCn(G)→ Bn(G),

a group introduced in [7] (and in Section 3 below), which in turn has
remarkable arithmetic properties [7], [9]. For example,

Bn(G)⊗Q = H0(Γ(n,G),Fn)⊗Q,

where Γ(n,G) ⊂ GLn(Z) is a certain congruence subgroup and Fn
is the Q-vector space generated by characteristic functions of convex
rational polyhedral cones in Rn, modulo functions of support less than
n [7, Section 9]. In particular, the groups Bn(G) carry Hecke operators.
For n = 2, there is a relation between B2(G) and Manin symbols.
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In this note, we investigate arithmetic properties of the a priori richer
groups BCn(G) and of the ring

BC∗(G) =
⊕
n≥1

BCn(G).

Our main result, Theorem 5.2, is the construction of an isomorphism

(1.1) BCn(G) '
⊕
[H,Y ]

Bn([H,Y ]),

where the sum is over G-conjugacy classes [H, Y ] of pairs (H, Y ), with
H ⊆ G an abelian subgroup and H ⊆ Y ⊆ ZG(H), and

Bn([H,Y ]) ' Bn(H)/(C(H,Y ))

is the quotient by a conjugation relation which depends on the repre-
sentative (H,Y ) of the conjugacy class of the pair (see Section 4). For
G abelian, we have

Bn([H, Y ]) = Bn(H), and BCn(G) =
⊕
H′⊆G

⊕
H′′⊆H′

Bn(H ′′);

in particular, the groups BCn(G) also carry Hecke operators, as defined
in [7, Section 6] and [9, Section 3].

Clearly, the passage to the combinatorial BCn(G) leads to a loss of
information. On the other hand, these groups are easier to compute.
In particular, the combinatorial decomposition (1.1) is not available for
the geometric Burnn(G).

Acknowledgments: We are very grateful to A. Kresch for his interest,
and to the referees for detailed and helpful remarks. The first author
was partially supported by NSF grant 2000099.

2. Moebius inversion

Let G be a finite group and H the poset of nontrivial abelian sub-
groups of G under the inclusion relation. Let S be the Z-module, freely
generated by H; we will view H as a subset of S. For H ∈ H we let
(H) be its image in S:

S =
⊕
H∈H

Z(H).

Let Ψ be the S-valued function on S, defined on generators by

Ψ((H)) =
∑

1(H′⊆H

(H ′), ∀H ∈ H,
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and extended to all of S by Z-linearity. Then there exists a unique
Z-valued function, the Moebius function

(2.1) µ = µH : H×H → Z
such that

Φ((H)) :=
∑

1(H′⊆H

µ(H ′, H)(H ′), ∀H ∈ H,

is the inverse of Ψ, i.e.,

Ψ ◦ Φ = Φ ◦Ψ = Id.

The Moebius function µ is constructed recursively by rules

• µ(H,H) = 1, for all H ∈ H,
• µ(H ′, H) = 0, for all H ′, H ∈ H with H ′ 6⊆ H,
•

µ(H ′′, H) = −
∑

H′′⊆H′(H

µ(H ′′, H ′),

for all H ′′, H ∈ H with H ′′ ( H.

When G is abelian the poset H contains all subgroups of G and is a
lattice, with join and meet operations defined by

H ′ ∧H := H ′ ∩H,
H ′ ∨H := subgroup generated by H ′ and H.

In Section 5, we will use the following result concerning the Moebius
function on lattices (see, e.g., [17], or [15, Sect 5]):

Lemma 2.1. Let G be a finite abelian group and H ′′, H ′ ⊆ G subgroups
satisfying

H ′′ ⊆ H ′ ( G.

Let µ be the Moebius function of the subgroup lattice of G. Then∑
H⊆G,H∩H′=H′′

µ(H,G) = 0.

3. Symbols groups

Let G be a finite abelian group,

G∨ = Hom(G,C×)

its character group, n a positive integer and

Sn(G)
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the Z-module generated by n-tuples of characters of G,

β = (b1, . . . , bn), bj ∈ G∨, for all j,

generating G∨, modulo the relation

(O) reordering: for all β = (b1, . . . , bn) and all σ ∈ Sn we have

β = βσ := (bσ(1), . . . , bσ(n)).

Consider the quotient

Sn(G)→ Bn(G)

by the blowup relation

(B): for β = (b1, b2, . . . , bn), one has

(b1, b2, . . . , bn) = (0, b2, . . . , bn), if b1 = b2,

and otherwise

β = β1 + β2,

where

(3.1) β1 := (b1 − b2, b2, . . . , bn), β2 := (b1, b2 − b1, . . . , bn), n ≥ 2.

For H ⊆ G and β = (b1, . . . , bn) we put

(3.2) β|H := (b1|H , . . . , bn|H).

The groups Bn(G) were introduced in [7]; they capture equivariant
birational invariants of G-actions on n-dimensional algebraic varieties.
Combining constructions in [7] and [9], we know that the groups

Bn(G)Q := Bn(G)⊗Q

have an interesting internal structure, e.g., they carry:

• Hecke operators,
• multiplication and co-multiplication arising from exact sequences

0→ G′ → G→ G′′ → 0,

e.g., multiplication

∇ : Bn′(G′)Q ⊗ Bn′′(G′′)Q → Bn′+n′′(G)Q.
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4. Combinatorial Burnside groups

Definitions. Let G be a finite group and n a positive integer. The
combinatorial symbols group is the Z-module

SCn(G),

generated by triples

(H, Y, β),

where

• H ⊆ G is an abelian group,
• Y ⊆ G is a subgroup satisfying H ⊆ Y ⊆ ZG(H), and
• β is a sequence of nontrivial characters of H generating H∨, of

length r = r(β) ≤ n, (by convention, when H = 1, the sequence
is the empty sequence, β = ()),

subject to relation

(O) reordering: for all (H,Y, β), with β = (b1, . . . , br), and σ ∈ Sr

we have

(H, Y, β) = (H, Y, βσ), βσ := (bσ(1), . . . , bσ(r)),

(C) conjugation: for all H, Y , and β, we have

(H,Y, β) = (gHg−1, gY g−1, βg),

where βg is the image of β under the conjugation by g ∈ G.

The combinatorial Burnside group is a quotient of the combinatorial
symbols group,

SCn(G)→ BCn(G),

obtained by imposing additional relations [12, Definition 8.1]:

(V) vanishing:

(H, Y, β) = 0

if b1 + b2 = 0, for some characters b1, b2 in β,
(B2) blowup relation:

for b1 = b2, put:

(4.1) (H, Y, (b1, . . . , br)) = (H,Y, (b2, . . . , br));
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for b1 6= b2, put:

(H,Y, β) =
(H, Y, β1) + (H, Y, β2) if bi ∈ 〈b1 − b2〉, for some i,

(H, Y, β1) + (H, Y, β2)︸ ︷︷ ︸
Θ1

+ (H̄, Y, β̄)︸ ︷︷ ︸
Θ2

otherwise.

Here we put

(4.2) β1 := (b1 − b2, b2, b3, . . . , br), β2 := (b1, b2 − b1, b3, . . . , br),

H̄ := ker(〈b1 − b2〉) ⊆ H, β̄ := β|H̄ .
The notation Θ1,Θ2 was used in [8, Section 4] and [12, Section 2].

Geometrically, relation (B2) can be interpreted as follows: consider
the exceptional divisor E = P1 of the blowup X̃ of a point x on a
smooth surface X. Assume that G acts regularly on X, that the action
is in standard form, and that the stabilizer of x is an abelian group
H ⊆ G. Then the two terms in Θ1 are the contributions, to the class
of the G-action on X̃, of H-fixed points on E and Θ2 is the contribution
of the generic point of E. Relation (B2) states that the contribution
from x to the class of the G-action on X equals to contribution from E
to the class of the G-action on X̃. Amazingly, all such relations arising
from G-equivariant blowups, in all dimensions, reduce to (B2).

Note that BCn(G) contains a distinguished subgroup

BCn(G)triv,

freely generated by symbols (1, Y, ()), up to conjugation. Taking the
quotient by these tautological symbols we obtain the main group of
interest

BCn(G)nontriv := BCn(G)/BCn(G)triv.

Relation (4.1) allows to shorten the length of β in the presence of
repeated characters; we call a (nontrivial) symbol reduced if the char-
acters in β are pairwise distinct.

Filtration. The blowup relation (B2) does not increase r(β), the num-
ber of characters in β. This allows to introduce

BCn,r(G) ⊂ BCn(G), n ≥ 1,

as the Z-submodule generated by reduced symbols where β satisfies
1 ≤ r(β) ≤ r. We have surjective homomorphisms

BCr(G)nontriv → BCn,r(G), 1 ≤ r ≤ n,

which need not be isomorphisms, for r < n.
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Vanishing. Relation (V) implies (see [8, Proposition 4.7]) that, for
H 6= 1,

(H, Y, β) = 0 ∈ BCn(G),

provided there exist a nonempty I ⊆ [1, . . . , r] and characters bi, i ∈ I,
such that

(4.3)
∑
i∈I

bi = 0 ∈ H∨.

Proposition 4.1. For a fixed G, we have

BCn(G)nontriv = 0, n� 0.

Proof. Recall that we are only considering symbols with H 6= 1. Let
` = `(G) be the maximal order of an element of G. We have

0 = (H,Y, (b1, . . . , b1︸ ︷︷ ︸
` times

, b2, . . . , bn−`)) = (H,Y, (b1, b2, . . . , bn−`)) ∈ BCn(G),

for any choices of bi, which implies that

BCn,r(G) = 0, 1 ≤ r ≤ n− `.

It suffices to note that for n� 0, reduced symbols have r(β) ≤ n−`. �

We define the combinatorial dimension:

(4.4) cd(G) := min{n ∈ N | BCm(G)nontriv = 0 ∀m > n}.

We may also consider versions of this for

BCm(G)nontriv ⊗Q, respectively, BCm(G)nontriv ⊗ Fp,

and denote the corresponding smallest n as in (4.4) by

cdQ(G), respectively, cdp(G).

Computer experiments and Theorem 5.2 suggest the following:

Conjecture 4.2. Let G be a finite group, and H ⊆ G a maximal
abelian subgroup. Then

cd(G) ≤ log2(|H|), and cdQ(G) ≤ log3(|H|) + 1.

In particular, for G = Sm, based on the determination of maximal
abelian subgroups of Sn in [3], we have

cd(G) ≤ m

3
log2(3), and cdQ(G) ≤ m

3
+ 1.
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Restriction. Section 7 in [12] introduced the restriction homomor-
phism; geometrically, this reflects the restriction of the action to a
subgroup. In our context, for G′ ⊆ G, it takes the form:

resGG′ : BCn(G)→ BCn(G′).

The group G acts by conjugation on the set of generating symbols as
in (C). For any symbol

s = (H, Y, β),

the conjugation action by G′ partitions the conjugacy class of s into
finitely many orbits. The restriction map is given by

s 7→
∑
s′

(H ′ ∩G′, Y ′ ∩G′, β′|H′∩G′),

where the sum is over orbit representatives s′ = (H ′, Y ′, β′). The map
respects relations, by construction. It is not surjective, in general; e.g.,

BC2(S3)nontriv = Z/2, BC2(C3)nontriv = Z.

Ring structure. There is a product map

BCn(G)× BCn′(G)→ BCn+n′(G),

given as the composition of

BCn(G)× BCn′(G)→ BCn+n′(G×G)

(H,Y, β)× (H ′, Y ′, β′) 7→ (H ×H ′, Y × Y ′, β ∪ β′)

with restriction to the diagonal. Geometrically, this comes from a direct
product of varieties, with diagonal action of G.

We obtain a graded ring

BC∗(G) := ⊕n≥1 BCn(G),

subject to various functoriality properties.

5. Structure theory

In this section, we establish an isomorphism of BCn(G) with a simpler
quotient of the combinatorial symbols group

SCn(G)→ BC ′n(G),

defined via relation (V), together with the following modification of
the blowup relation:
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(B2′) for b1 = b2, put:

(5.1) (H, Y, (b1, b2, . . . , br)) = (H, Y, (b2, . . . , br));

for b1 6= b2, put:

(H,Y, β) = (H,Y, β1) + (H,Y, β2),

where β1, β2 are as in (4.2).

Comparing (B2′) to relation (B2), note that here we only assume
that b1, . . . , br are nonvanishing and that they generate H∨, we do not
require that bi ∈ 〈b1 − b2〉, for some i.

For clarity, we will write

(H,Y, β)′,

when we view the corresponding symbol as an element in BC ′n(G).
The relations respect the G-conjugacy class [H, Y ] of the pair (H,Y );

so that

(5.2) BC ′n(G) =
⊕
[H,Y ]

Bn([H,Y ]),

where

Bn([H,Y ]) :=
⊕

H′,Y ′,β′

Z(H ′, Y ′, β′)/(V), (B2′), (H ′, Y ′) ∈ [H, Y ].

Consider the following conjugation relation on Sn(H):

(C(H,Y )): for all β ∈ Sn(H) and g ∈ NG(H) ∩NG(Y ) we have

β = βg.

Lemma 5.1. We have have an isomorphism of abelian groups

Bn([H,Y ]) ' Bn(H)/(C(H,Y )).(5.3)

Proof. Fix a representative (H, Y ) of the conjugacy class and consider

(H ′, Y ′, β′), (H ′, Y ′) ∈ [H,Y ], β′ = (b′1, . . . , b
′
r).

Let g ∈ G be such that

H = gH ′g−1 and Y = gY ′g−1,

and put

(b′i)
g := image of b′i under the conjugation by g, i = 1, . . . , r.
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Consider the homomorphism given on symbols in Bn([H, Y ]) by

(H ′, Y ′, β′) 7→ ((b′1)g, . . . , (b′r)
g, 0, . . . , 0︸ ︷︷ ︸

n−r

) ∈ Sn(H).(5.4)

This is independent of the choice of g: given g, g′ ∈ G, such that

H ′ = g−1Hg = g′−1Hg′ and Y ′ = g−1Y g = g′−1Y g′,

we have

g′g−1 ∈ NG(H) ∩NG(Y ).

Therefore, by definition of (C(H,Y )), we have

((b′1)g, . . . , (b′r)
g, 0, . . . , 0︸ ︷︷ ︸

n−r

) = ((b′1)g
′
, . . . , (b′r)

g′ , 0, . . . , 0︸ ︷︷ ︸
n−r

),

since

((b′i)
g)(g′g−1) = (b′i)

g′ , i = 1, . . . , r.

The mapping (5.4) respects (C), by construction. Indeed, for any
g ∈ G, the symbols

(H ′, Y ′, β′) and (gH ′g−1, gY ′g−1, β′g)

will be mapped to the same element in Bn(H)/(C(H,Y )) since

H = g′H ′g′−1 implies H = g′g−1 · (gH ′g−1) · gg′−1.

To see its compatibility with (V) and (B2′), it suffices to observe that
the conjugation action is linear, i.e.,

(b1 + b2)g = bg1 + bg2, for all b1, b2 ∈ H∨, g ∈ G,
and we have the following identities in Bn(H), by definition:

• (b1, b1, b2, . . .) = (0, b1, b2, . . .),
• (b1, b2, . . .) = (b1 − b2, b2, . . .) + (b1, b2 − b1, . . .),
• (b1,−b1, . . .) = 0.

On the other hand, by conjugation relations, the map defined by

(b1, . . . , bn) 7→ (H,Y, β),

where β is obtained by removing all 0’s in the sequence of bi, is the
inverse of the map (5.4). It is clearly compatible with (B) and (C(H,Y )).

Therefore (5.4) induces the desired isomorphism (5.3). �

We will now construct an isomorphism of Z-modules

BCn(G) ' BC ′n(G).
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The decomposition (5.2) above allows us to efficiently compute BCn(G),
and to import further structures into BCn(G).

We start by defining a poset relation on the set of symbols:

s′ := (H ′, Y ′, β′) ≤ (H, Y, β) =: s

if and only if

• Y = Y ′,
• H ′ ⊆ H, and
• β′ = β|H′ .

We observe that the intervals in this poset relation are isomorphic, as
posets, to intervals in the poset H of abelian subgroups of G. Locally,
these intervals are isomorphic to intervals in posets of subgroups of
finite abelian groups; the corresponding Moebius function is the one in
(2.1).

Consider the following homomorphisms of Z-modules

Ψ,Φ : SCn(G)→ SCn(G)

defined on symbols by

Ψ : (H, Y, β) 7→


∑

1(H′⊆H

(H ′, Y, β′)′ when H 6= 1,

(1, Y, ())′ when H = 1,

respectively,

Φ : (H,Y, β)′ 7→


∑

1(H′⊆H

µ(H ′, H)(H ′, Y, β′) when H 6= 1,

(1, Y, ()) when H = 1,

where

β′ = β|H′ ,
and extended by linearity. By convention, if β′ contains a zero, the
symbol is considered to be zero.

These are isomorphisms (see Section 2), we have

Ψ ◦ Φ = Φ ◦Ψ = Id.

Theorem 5.2. For all n ≥ 1 and all G, the homomorphism Ψ descends
to the respective quotients of the combinatorial symbols group, yielding
a commutative diagram of abelian groups
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SCn(G)
Ψ //

(V),(B2)

��

SCn(G)

(V),(B2′)
��

BCn(G)
Ψ // BC ′n(G),

with an isomorphism on the bottom row, whose inverse is given by Φ.

Proof. It is clear that both Ψ and Φ respect relation (V). It remains
to show their compatibility with (B2), respectively, (B2′).

First, we show Ψ is compatible with (B2′), i.e. for any symbol

s := (H,Y, β), β := (b1, . . . , br), H 6= 1

we have

Ψ(s)
?
= Ψ((H,Y, β1)) + Ψ((H, Y, β2)) + Ψ(Θ2(s)) ∈ BC ′n(G),

with β1, β2 and Θ2 defined in (4.2). Assume b1 6= b2 and put

H̄ = ker(b1 − b2),

then
Ψ((H,Y, βi)) =

∑
H′⊆H,H′ 6⊆H̄

(H ′, Y, βi|H′)′, i = 1, 2,

since when H ′ ⊆ H̄, the restriction of β1 and β2 to H ′ will have non-
trivial space of invariants (i.e., a zero in the sequence of characters).

On the other hand, by definition, we have

Ψ(s) =
∑

H′⊆H,H′ 6⊆H̄

(H ′, Y, β|H′)′ +
∑

1(H′⊆H̄

(H ′, Y, β|H′)′.(5.5)

Observe that
b1|H′ = b2|H′ ⇔ H ′ ⊆ H̄.

Applying (B2′) to the right side of (5.5) yields

Ψ(s) =
∑

H′⊆H,H′ 6⊆H̄

(H ′, Y, β1|H′)′ +
∑

H′⊆H,H′ 6⊆H̄

(H ′, Y, β2|H′)′

+
∑

1(H′⊆H̄

(H ′, Y, (b2|H′ , b3|H′ , . . . , b′r|H′))′

=Ψ((H,Y, β1)) + Ψ((H, Y, β2)) + Ψ(Θ2(s)).

We now show that Φ respects (B2′). By definition, we have

Φ((H,Y, β)′) =
∑

1(H′⊆H

µ(H ′, H)(H ′, Y, β|H′) ∈ BCn(G).(5.6)
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Consider all Θ2 terms in (B2) arising from symbols in the sum on the
right side of (5.6):∑

1(H′⊆H

µ(H ′, H)Θ2((H ′, Y, β|H′))

=
∑

1(H′′⊆H

( ∑
H̄∩H′=H′′

µ(H ′, H)

)
· (H ′′, Y, β̄|H′′).

It suffices to observe that µ(H ′, H) equals the corresponding value of
the Moebius function of the subgroup lattice of the abelian group H.
Therefore, the compatibility of Φ with (B2) reduces to Lemma 2.1. �

6. Examples and applications

It is an important classical problem in algebraic geometry to clas-
sify finite subgroups of the Cremona groups Crn(k) = Birk(Pn), up to
conjugation. In particular, one would like to know whether or not a
priori different embeddings of a group G ↪→ Crn(k) are conjugate. One
possible way to show this is to check that the associated actions of G
on Pn give rise to different invariants in Burnn(G). This was done in
[5] is some low-dimensional examples. Another possible strategy is to
consider invariants in BCn(G) instead. These contain less information,
but on the other hand, it is easier to show that certain classes are
distinct in BCn(G) than in Burnn(G).

This section is devoted to precomputing BCn(G), for n = 2 and n = 3
and interesting finite groups G admitting actions on rational surfaces
– the tabulated results allow to quickly decide in which cases one may
expect nontrivial invariants. The results are obtained by computer,
writing down explicitly generators and relations. Nonvanishing of a
particular symbol in the quotient is seen via linear algebra.

6.1. Abelian groups. Classification of abelian subgroups of the plane
Cremona group, i.e., of actions of abelian groups on rational surfaces,
is well-understood (see [1], and the references therein). Much less is
known in higher dimensions. First applications of the Burnside group
formalism to the classification of such actions, in particular to actions
of cyclic groups on cubic fourfolds, can be found in [5].

When G is abelian, Theorem 5.2, combined with decomposition
(5.2), shows that

(6.1) BCn(G) =
⊕
H′⊆G

⊕
H′′⊆H′

Bn(H ′′).
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For elementary abelian p-groups G ' Frp
Bn(G) = 0, n < r,

since a sequence of characters of length < r cannot generate the char-
acter group. By (6.1), the computation of BCn(G) reduces to the com-
putation of Bn(H ′′), where H ′′ = Fmp with m ≤ n. The number of
H ′′ ⊆ G such that H ′′ ∼= Fmp is #Gr(m, r)(Fp). Results in [7, Sec-
tion 5], especially Theorem 14, yield finer structural information about
Bn(H ′′)⊗Q.

Problem 6.1. Determine the ring structure of BC∗(G), where G = Frp.

The isomorphisms Φ and Ψ induce a ring structure on

BC ′∗(G) :=
⊕
n≥1

BC ′n(G),

with the product map defined on symbols by

(H,Y, β)′×̃(H ′, Y ′, β′)′ 7→ Ψ(Φ((H,Y, β)′)×Φ((H ′, Y ′, β′)′)).(6.2)

By construction, Ψ and Φ are ring isomorphisms

BC∗(G) ' BC ′∗(G).

6.2. Central extensions of abelian groups. According to [2], over
k = F̄p, the quotient spaces V/G are universal for unramified coho-
mology: given a variety X/k and an unramified class α ∈ Hi

nr(k(X)),
with i ≥ 2, (Galois cohomology with torsion coeffients, coprime to p),
there exists a rational map X → V/G, where V is a faithful repre-
sentation of a central extension G of an abelian group, such that α is
induced from V/G. There is a general algorithm to compute the class,
in Burnn(G), of G-actions on n-dimensional linear representations V
of G, based on De Concini–Procesi models of subspace arrangements
[10]. This motivates the study of BC∗(G) for groups of such type.

As a first example, let G = Dp be the dihedral group of order 2p,
with p ≥ 5 is a prime. Computer experiments suggest that

BC2(G)nontriv = B2([Cp,Cp]) = Z
(p−5)(p−7)

24 × (Z/2)
p−3
2 × Z/p

2−1
12
.

The conjugation action on β = (b1, b2) for symbols in B2([Cp,Cp]) is
equivalent to

(Cp,Cp, (b1, b2)) = (Cp,Cp, (−b1,−b2)).

This leads to a variant of the group B−2 (Cp) introduced in [7]. In fact,

B−2 (Cp)⊗Q ' B2([Cp,Cp])⊗Q,
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since according to [5, Proposition 3.2], we have

(Cp,Cp, (a, b)) + (Cp,Cp, (−a, b)) = 0 ∈ B2([Cp,Cp])⊗Q.
The rank of the torsion-free part of B2([Cp,Cp]) is thus related to the
modular curve X1(p) (see [7, Section 11]).

We may also consider central extensions

0→ Z/p→ G→ (Z/p)2 → 0

with Z(G) ∼= Z/p, and p a prime. For example, we have

• for p = 2, G = D4, we have BC2(G)nontriv = (Z/2)3.
• For G the Heisenberg group over a finite field Fp, with p an odd

prime, we have

BCn(G)nontriv = Bn([Z/p,Z/p])3p+5 ⊕ Bn([(Z/p)2, (Z/p)2])p+1.

6.3. Symmetric groups. We compute the combinatorial Burnside
groups for small symmetric groups G = Sn:

n BC2(G)nontriv BC3(G)nontriv

3 Z/2 0

4 (Z/2)3 0

5 (Z/2)6 × Z/4 0

6 (Z/2)31 × (Z/4)3 × Z/8 (Z/2)5 × Z/4
7 (Z/2)57 × (Z/4)12 × (Z/8)2 × Z/3 (Z/2)16 × Z/4
8 (Z/2)290 × (Z/4)30 × (Z/8)6 × Z/16× (Z/3)2 × Z (Z/2)122 × (Z/4)4 × Z/8× Z

For example, for G = S4, the only conjugacy classes [H, Y ] that
contribute to BC2(G)nontriv are (the conjugacy classes of) the pairs:

(1) (C3,C3), with C3 = 〈(2, 4, 3)〉,
(2) (K4,K4), with K4 = 〈(3, 4), (1, 2)(3, 4)〉,
(3) (C4,C4), with C4 = 〈(1, 4, 2, 3)〉.

We have
B2([H, Y ]) = Z/2

for the corresponding summands of BC ′2(G).

6.4. Nonabelian subgroups of the plane Cremona group. Here,
we compute BCn(G)nontriv for groups admitting primitive actions on P2,
namely:

A5,ASL2(F3),PSL2(F7),A6.

• G = A5 = 〈(1, 2, 3), (3, 4, 5)〉 ⊂ S5 : Nontrivial terms arise from
– (C3,C3), with C3 = 〈(1, 2, 5)〉,
– (C5,C5), with C5 = 〈(1, 4, 5, 3, 2)〉,
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which contribute
– B2([(C3,C3)]) = Z/2,
– B2([(C5,C5)]) = (Z/2)2.

We have

BC2(G)nontriv = (Z/2)3, and BCn(G)nontriv = 0, n ≥ 3.

• G = C2
3 : SL2(F3) = ASL(2, 3) ⊂ S9, generated by

〈(2, 5, 8)(3, 9, 6), (2, 4, 3, 7)(5, 6, 9, 8), (1, 2, 3)(4, 5, 6)(7, 8, 9)〉.

We have

BC2(G)nontriv = (Z/2)7 × Z13, BC3(G)nontriv = Z/2× Z,

BCn(G)nontriv = 0, n ≥ 4.

• G = PSL(2, 7) = 〈(3, 6, 7)(4, 5, 8), (1, 8, 2)(4, 5, 6)〉 ⊂ S8: Non-
trivial terms arise from

– (C3,C3), with C3 = 〈(2, 6, 5)(3, 7, 4)〉,
– (C7,C7), with C7 = 〈(1, 2, 5, 3, 6, 7, 4)〉,
– (C4,C4), with C4 = 〈(1, 3, 4, 8)(2, 7, 6, 5)〉,

which contribute
– B2([(C3,C3)]) = Z/2,
– B2([(C7,C7)]) = Z/2× Z,
– B2([(C4,C4)]) = Z/2.

We have

BC2(G)nontriv = (Z/2)3 × Z, BC3(G)nontriv = Z/2,

BCn(G)nontriv = 0, n ≥ 4.

• G = A6 = 〈(1, 2)(3, 4, 5, 6), (1, 2, 3)〉: We have

BC2(G)nontriv = (Z/2)7 × Z/4× Z, BC3(G)nontriv = Z/2× Z,

BCn(G)nontriv = 0, n ≥ 4.

6.5. A geometric application. Consider

G = C2 ×S3 = D6 = 〈(1, 2, 3, 4, 5, 6), (1, 6)(2, 5)(3, 4)〉 ⊂ S6.

This group acts linearly on P2 and also admits an action on the del
Pezzo surface X of degree 6.

Theorem 6.2. [6], [13, Section 9] The G-actions on P2 and X are not
equivariantly birational. The G-actions on P2 × P2 and X × P2, with
trivial action on the second factor, are equivariantly birational.
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The proof in [6] relies on tools of the equivariant Minimal Model
Program for surfaces, in particular, on the classification of Sarkisov
links. The proof of stable birationality relies on explicit manipulations
of G-representations and applications of the No-Name-Lemma. The
following challenge remains:

Question 6.3. [13, Remark 9.13] Are the G-actions on P2 × P1 and
X × P1 birational?

In [5, Section 7.6], we used the Burnside group Burn2(G) to distin-
guish these actions. Here, we rework this example in the framework of
combinatorial Burnside groups (see also [11, Section 6]).

We have
BC2(G)nontriv = (Z/2)5 × Z/4,

with decomposition

• H1 = C3 = 〈(1, 3, 5)(2, 4, 6)〉,
• H2 = C2

2 = 〈(2, 6)(3, 5), (1, 4)(2, 5)(3, 6)〉,
• H3 = C6 = 〈(1, 2, 3, 4, 5, 6)〉.

Nontrivial contributions to BC ′2(G) arise from

• B2([(H1, H1)]) = Z/2,
• B2([(H2, H2)]) = (Z/2)2,
• B2([(H1, H3)]) = Z/2,
• B2([(H3, H3)]) = Z/2× Z/4.

By [11, Proposition 6.1], we have a formula for the difference

[X ý G]− [P2 ý G] ∈ Burn2(G),

where P2 = P(1⊕Vχ), and Vχ is the standard 2-dimensional representa-
tion of S3, twisted by the character of C2. Applying the homomorphism

Burn2(G)→ BC2(G),

defined in [12, Proposition 8.2], we obtain the class

(diagonal in C2 ×S2,C2 ×S2, (1))

+(C2,C2 ×S2, (1)) + (C3,C3, (1, 1))

−(C2,C2 ×S3, (1))− (C2 × C3,C2 × C3, ((0, 1), (1, 2))) ∈ BC2(G)nontriv.

Its image under the map Ψ equals

(C3,C3, (1, 1))− (C3,C2 × C3, (1, 2)) ∈ BC ′2(G),

a nontrivial 2-torsion class. The advantage of this approach is that it
is computationally easier to analyze the class in BC ′2(G) rather than
BC2(G), as the relations do not change stabilizers. Note also that
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B2(G) is only applicable when G is abelian – in the case at hand, the
restriction of the action to any abelian subgroup of G is linearizable.

On the other hand, BC3(G)nontriv = 0; in particular, we cannot dis-
tinguish the classes of X × P1 and P2 × P1, with trivial action on the
P1-factor.
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