FINITE ABELIAN GROUPS ACTING ON RATIONALLY
CONNECTED THREEFOLDS II: GROUPS OF K3 TYPE
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ABSTRACT. We study finite abelian groups acting on three-dimensional rationally con-
nected varieties. We concentrate on the groups of K3 type, that is, abelian extensions
by a cyclic group of groups that faithfully act on a K3 surface. In particular, if a finite
abelian group faithfully acts on a threefold preserving a K3 surface (with at worst du
Val singularities), then such a group is of K3 type. We prove a classification theorem
for the groups of K3 type which can act on three-dimensional rationally connected
varieties. We note the relation between certain groups of K3 type and K3 surfaces
with higher Picard number.
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1. INTRODUCTION

We work over the field of complex numbers C. By Bir(X) we denote the group of
birational automorphisms of an algebraic variety X. We deal with the classification
problem of finite subgroups in Bir(X) when X is a rationally connected variety. More
specifically, we are mostly interested in finite subgroups of the Cremona group. Recall
that the Cremona group is defined as Cr,(C) = Bir(P™). The classification of finite
subgroups of Cry(C) was obtained in [ ]. As for finite subgroups of Cr3(C), the
complete classification seems to be out of reach. There are results concerning some classes
of finite groups, see [ | for simple groups.

In this paper, we concentrate on finite abelian subgroups of Bir(X) when X is a
rationally connected variety. The case of Cr;(C) = PGL(2,C) is elementary, see Proposi-
tion 2.7. The classification of finite abelian subgroups in Crs(C) was obtained in [B107],
see Theorem 2.8. The study of finite abelian subgroups in Cr3(C) was initiated in | ]
In arbitrary dimension, there exists the following result.
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Theorem 1.1 (] , Corollary 11]). Let X be a rationally connected variety of di-
mension n, and let G C Bir(X) be a finite abelian p-group. Then G can be generated by
r elements where

r< 2 <o,
p—1
The bound as in Theorem 1.1 in dimension n = 2 was obtained in | ], it also
follows from [Bl107] and | ]; in dimension n = 3 it was obtained in a series of works

[ I, 1 I, 1 I, [ 1, [ I, [ | using explicit methods of the minimal
model program.

To deal with the case of threefolds, the following definitions were introduced in | ].
A finite abelian group G is called a group of product type, if G = G X G2 where G; C
Cr;(C). In particular, G is isomorphic to a subgroup in

Crl(C) X CI‘Q(C) C Cl"g(C)

Using the classification of finite abelian subgroups of Cr;(C) for ¢ = 1,2, see Proposition
2.7 and Theorem 2.8, it is not hard to write down the complete list of groups of product
type, see Table 2 in Section 2.3.

We say that a finite abelian group G is of K3 type, if G is an abelian extension of a
finite abelian group H that faithfully acts on a K3 surface, by a cyclic group:

0—-2Z/m—G— H—0. (1.2)

In particular, if a finite abelian group faithfully acts on a three-dimensional variety pre-
serving a K3 surface (with at worst du Val singularities), then such a group is of K3
type.

The following theorem is the main result of | ] (see Section 2.6 for the definitions
of a GQ-Mori fiber space and a GQ-Fano variety).

Theorem 1.3 (| , Theorem 1.7]). Let X be a rationally connected variety of dimen-
sion 3, and let G C Bir(X) be a finite abelian group. Then

(1) either G is of product type,

(2) or G is of K3 type,

(3) or G faithfully acts on a GQ-Fano threefold X' with | — Kx/| = @ such that X’
1s G-birational to X. Moreover, any GQ-Mori fiber space with a faithful action
of G is a GQ-Fano threefold with empty anti-canonical system.

The three cases in Theorem 1.3 are not mutually exclusive (see Example 1.9 below).
It is known that if a finite abelian group that faithfully acts on a rationally connected
threefold preserving a rational curve, a rational surface, or a structure of a Mori fiber
space with a non-trivial base, then such a group is of product type, see [ , Corollary
3.14, Corollary 3.17]. Essentially, this follows from a purely algebraic result on abelian
extensions of finite abelian groups, see Proposition 2.10. It is also known that if a finite
abelian group that faithfully acts on a threefold with terminal singularities has a (smooth
or singular) fixed point then it is of product type, see Theorem 5.12. However, not all
finite abelian groups that can faithfully act on a rationally connected threefold are of
product type. Also, it is expected that there are no groups of type (3) in Theorem 1.3
which are not of product type or of K3 type.

Conjecture 1.4 (] , Conjecture 1.8]). In the notation of Theorem 1.3, any group of
type (3) is either of product type or of K3 type.

In | , Corollary 1.10] it is proven that there are only finitely many isomorphism
classes of finite abelian groups of K3 type which faithfully act on a rationally connected
threefold. This result follows from two boundedness results. First, there only finitely many
isomorphism classes of finite groups that can faithfully act on a K3 surface, see [ ]
for a complete classification. This bounds the group H in the exact sequence (1.2). The
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second result, which is needed to bound m in (1.2), is the boundedness of the indices of
Fano threefolds with canonical singularities. Of course, it follows from the boundedness
of Fano threefolds with canonical singularities. Recently, an effective bound equal to 66
was obtained in | |. Hence the main problem in dealing with groups of K3 type that
act on rationally connected threefolds is to bound the number m in (1.2) for each group
H that can faithfully act on a K3 surface. It turns out that this number indeed can be
effectively bounded.
The main result of our work is as follows.

Theorem 1.5. Let X be a rationally connected variety of dimension 3, and let G C
Bir(X) be a finite abelian group. Then either G is of product type, or of type (3) as in
Theorem 1.3, or G is isomorphic to one of the following groups:

(1) (Z/4)*,

(2) (Z/6)° x Z/2,

(3) (Z/6)> x (2/3)?,

(4) (Z/8)* x Z/4 x Z/2.

All the cases in Theorem 1.5 are realized as shown in Example 1.8. If Conjecture 1.4
is true, then the list of groups of product type (see Table 2 in Section 2.3) together with
Theorem 1.5 provide a complete list of finite abelian groups that can act on a rationally
connected variety of dimension 3.

Corollary 1.6. Let X be a rationally connected variety of dimension 3, and let G C
Bir(X) be a finite abelian group. Assume that

e cither Conjecture 1.4 holds,
o or G faithfully acts on a terminal Fano threefold X' with | — Kx/| # 0.

Then G is isomorphic to one of the following groups (and all these cases are realized):

G
(1) | Z/kxZ/IxZ/m k
(2) | Z/2k x (Z/4) x Z/2 k>
(3) | 2/3k x (2/3)? k> 1
k
k

(4) | Z/2k x 221 x (Z/2)?
(5) | Z/2k x (Z/2)*

(6) | (2/4) x (2/2)°
(7) | (Z/2)°

(8) | (/4!

(9) | (Z/6)° xZ/2
(10) ] (2/6)* x (Z/3)?
(11)| (Z/8)* x Z/4 x Z/2

Table 1. Conjectural list of all finite abelian groups that can faithfully act on a
rationally connected threefold

In Table 1, the groups (1)—(7) are of product type, so they can act on a rational
threefold, while the groups (8)—(11) are of K3 type and not of product type.

Finite abelian groups of symplectic automorphisms of K3 surfaces were classified by
V. Nikulin in the famous paper [ ], see Theorem 3.3. The classification of Brand-
horst and Hofmann | ] provides the list of all maximal finite abelian groups that can
faithfully act on a K3 surface, cf. Theorem 3.7. It turns out that all but 6 of them can
be realized as subgroups of Cry(C).



Proposition 1.7. Let H be a finite abelian group that faithfully acts on a K38 surface.
Assume further that H is not isomorphic to a subgroup of Cra(C), that is, it cannot
faithfully act on a rational surface. Then H is isomorphic to one of the following groups:

(1) (Z/4)°,

(2) (Z/6)* x Z/2,

(3) Z/6 x (Z/3)*,

(4) Z/8 x Z]4 x Z/2,

(5) (Z2/2)°,

(6) Z/4 x (Z/2)3.

Using the results of | |, we give a more precise description of the action of these 6
groups on K3 surfaces, including the decomposition into symplectic and non-symplectic
subgroups and invariant lattice in cohomology of a surface, see Corollary 3.9 and Propo-
sition 4.4. In particular, all of these 6 groups are not symplectic. In fact, all the finite
abelian groups of symplectic automorphisms can be realized as subgroups of Cra(C).

Using the exact sequence (1.2) and Proposition 2.10, we conclude that if H is not one
of 6 groups from Proposition 1.7 then G is of product type. Hence, to study groups of
K3 type which are not of product type, we may assume that H is one of the 6 groups as
in Proposition 1.7. The problem is to bound the number m as in (1.2).

Example 1.8. We construct the actions of groups of K3 type on (singular) Fano varieties
which are Fermat hypersurfaces in weighted projective spaces. The corresponding G-
invariant K3-surfaces are given by the hyperplane sections zy = 0.

(1) Let X4 C P* be given by the equation
zy+at 4+ oy + s +a; =0,
with the action of G' = (Z/4)*. Note that X, is smooth.
(2) Let X C P(1,1,1,1,3) be given by the equation
x5+ b + a8+ 2§+ 23 =0,
with the action of G = (Z/6)® x Z/2. Note that X4 is smooth.
(3) Let X§ C P(1,1,1,2,2) be given by the equation
zg + @) + 25 + 2§ + 25 =0,
with the action of G = (Z/6)? x (Z/3)?. Note that X§ has 3 singular points of
type 2 x (1,1,1).
(4) Let Xg C P(1,1,1,2,4) be given by the equation
h + @) + @5 + 23 + 25 =0,
with the action of G = (Z/8)? x Z/4 x Z/2. Note that X3 has 2 singular points
of type 3 x (1,1,1).
Example 1.9. We give examples of the actions of a finite abelian group G on a rationally
connected threefold where G is both of K3 type and of product type.

(5) Let X999 C P6 be the intersection of three quadrics, so it is given by the

equations
6

6 6
3= St = Yot =0
i=0 i=0 i=0
with the action of G = (Z/2)°.

(6) Let X44 C P(1,1,1,2,2,2) be given by the equations

Q?é + Iéll + $§ + .’L‘3 + .’1?4 + 3?5 = )\03’33 + )\15(5411 + )\233% + )\31’% + )\41‘3 + )\533? =0,

with the action of G = (Z/4)? x (Z/2)3. Note that X4 4 has 4 singular points of
type 2 x (1,1,1).



By | , Corollary 1.1.9] the varieties X in cases (1)—(4) in Example 1.8 are not
rational. This observation gives rise to the following question.

Question 1.10. Can the groups (1)—(4) in Example 1.8 be realized as subgroups of
Cr3(C)? In other words, can such groups faithfully act on a rational threefold?

If the answer to Question 1.10 is negative, then Conjecture 1.4 would imply that all
finite abelian subgroups of Cr3(C) are of product type.

We note that the Fermat quartic K3 surface Sy in P? which is a G-invariant hyperplane
section of X, from Example 1.8(1) enjoys many nice properties. For example, it has
maximal possible Picard rank 20, see Example 4.1. Recall that such K3 surfaces are called
singular (although later in the text we reserve this term for surfaces having singularities
to avoid confusion). In fact Sy is a Kummer K3 surface associated with the product of two
isogenous elliptic curves E ,— and E, . In [ ] it is shown that the finite abelian
groups in Cry(C) that do not belong to Cr;(C) x Cry(C), that is the groups (3)—(4) from
Theorem 2.8, correspond to elliptic curves with complex multiplication. As pointed out
in | ], singular K3 surfaces in many ways behave like elliptic curves with complex
multiplication. Let Sg, Sg, Ss, S2,2,2, S4,4 be the G-invariant hyperplane sections given by
the equation o = 0 of Fano threefolds (2)—(6) from Example 1.8 and Example 1.9. Using
the results of | ], one computes p(Se) = p(S§) = 20, p(Ss) = 18. It is known that
for a Kummer K3 surface, its Picard rank is greater or equal than 17. This observation
motivates the following question.

Question 1.11. Are Sg, S§, Ss, 5222, 54,4 Kummer K3 surfaces?

It is known that singular K3 surfaces are classified by its transcendental lattice Tg
which is even, positive definite and has rank 2. If the values of the quadratic form on this
lattice are divisible by 4, then S is Kummer. Similar criteria are known for K3 surfaces
with Picard rank at least 17, cf. | , 14.3.20]. It would be interesting to compute
transcendental lattices for the above surfaces.

Sketch of proof of Theorem 1.5. Let G be a group that faithfully acts on a rational
connected threefold X. Using G-equivariant resolution of singularities and G-equivariant
minimal model program, we may assume that X is a projective GQ-Mori fiber space over
the base Z. If dim Z > 0 then G is of product type by | , Corollary 3.17]. Hence we
may assume that X is a GQ-Fano threefold.

By assumption, G is not of type (3) as in Theorem 1.3, hence we may assume that
h%(—=Kx) > 0. Also, by the proof of | , Theorem 1.7] we may assume that for any
G-invariant element S € | — Kx|, the surface S is a K3 surface with at worst du Val
singularities. In the notation of the exact sequence (1.2), we need to bound m for each
finite abelian group H C Aut(S). If H C Cry(C), then by Proposition 2.10 the group
G is of product type. Thus we may assume that H is not isomorphic to a subgroup of
Cry(C). Using the classification of | ], cf. Theorem 3.7 and Remark 3.7, we see that
there exist only 6 possibilities for H.

We distinguish between two different cases: h’(—Kx) > 2 and h’(—Kx) = 1. First,
we deal with the more simple case h°(—Kx) > 2. We pick two G-invariant K3 surfaces
S,8" € |— Kx|. Lemma 6.2 shows that Z/m as in (1.2) embeds into H' C Aut(S’), where
H' is also one of the groups (1)—(6) from Theorem 3.7. This allows us to bound m in this
case. More precise analysis (see Theorem 6.5) shows that either G is of product type,
or G is isomorphic to one of the 4 exceptional groups (1)-(4) as in Theorem 1.5.

It remains to deal with the case h°(—Ky) = 1. Here we have only one element
S € | — Kx| which is automatically G-invariant. The orbifold Riemann-Roch formula
(5.2) implies that in this case the set of non-Gorenstein singularities of X is non-empty.
We describe the possible G-orbits of such points depending on the group H in Lemmas 7.3
7.7. This allows us to list all possibilities for the basket of singularities (cf. Section 5.1)
of X in Proposition 7.11.
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Then, we use local analysis of the terminal singularities on X as well as some global
geometric data on the K3 surface S to conclude. In particular, we use the description
given in [ | of the invariant cohomology group of S which is given in Proposition 4.4,
see also Corollary 4.6 and Corollary 4.7 for geometric implications. We also need the
relation between terminal singularity of X and the corresponding singular point on S,
see Section 5.4. Finally, we need various properties of symplectic and non-symplectic
automorphisms of K3 surfaces as explained in Section 3.

Given all this, we proceed to analyze the action of G on X starting from the case where
X has only points of type 3(1,1,1) as non-Gorenstein singularities. Then we consider
the case of more general terminal cylic quotient singularities. Finally, we deal with the
case of arbitrary terminal singular points. It turns out that in all the cases either G is of
product type, of G is isomorphic to one of the four exceptional groups as in Theorem 1.5.
This concludes the proof.

Structure of the paper. In Section 2, we collect some preliminary results. In partic-
ular, we discuss extensions of finite abelian groups and known results on finite abelian
subgroups of Cremona groups in dimensions 1 and 2. In Section 3, we study group actions
on K3 surfaces with the emphasis on the classification of finite abelian groups acting on
K3 surfaces. In Section 4, we consider lattices in the cohomology group of a K3 surface.
In Section 5, we recall the classification of three-dimensional terminal singularities, study
their geometry and group actions on them. In Section 6, we treat the case h®(—Kx) > 2
which turns out to be rather elementary. The rest of the paper is devoted to the more com-
plicated case h’(—Kx) = 1. In Section 7, we describe possible orbits of non-Gorenstein
singularities depending on the group H. In Section 8, we consider the case where all the
non-Gorenstein singularities of X are the points of type %(1, 1,1). In Section 9, we treat
the case when all the non-Gorenstein singularities of X are cyclic quotient singularities. In
Section 10, we treat the case of terminal points which are non necessarily cyclic quotient
singularities.
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2. PRELIMINARIES

We work over the field of complex numbers C. All varieties are projective and defined
over C unless stated otherwise. We will use the language of the minimal model program
(the MMP for short), see e.g. | ].

2.1. Group actions. We start with the following well-known results.

Lemma 2.1 (cf. | , Lemma 4]). Let X be an algebraic variety, and G C Aut(X) be
a finite subgroup. Assume P € X is a fixed point of G. Then the induced action of G on
the tangent space TpX is faithful.

By t(G) we denote the rank of a group G, that is, the minimal number of generators.

Example 2.2. If a finite abelian group G linearly and faithfully acts on a vector space V'
then t(G) < dim V.



Lemma 2.3 (cf. | , Lemma 2.6], | , Lemma 2.8]). Let X be a three-dimensional
algebraic variety with isolated singularities, and G C Aut(X) be a finite abelian subgroup.
(1) If there is a curve C C X of G-fized points, then t(G) < 2.
(2) If there is a (possibly reducible) divisor S C X of G-fized points, then t(G) < 1.
If moreover S is singular along a curve, then G is trivial.
(8) If X is smooth, and S C X is a Weil divisor of G-fixed points such that S is
singular, then G is trivial.

2.2. Extensions of finite abelian groups. Let G be a finite abelian group. In what
follows, we will denote by G, the p-Sylow subgroup of G' where p is a prime number, so

we have
G =[G
p

We say that G, is the p-part of G. Also, a sequence of finite abelian groups
0-H—-G—-K-=0 (2.4)

is exact if and only if for any prime p the p-parts Hy, G)p, K}, of the groups H,G, K,
respectively, form an exact sequence

0—H,— G, — K, —0. (2.5)

We say that the exact sequence (2.5) is the p-part of the exact sequence (2.4).

For an abelian p-group G,, we say that G, has type

)\Z[/\l,...,/\k-] for A >...>2 >0
if
Gp = Z/pM x ... x Z[p.
Note that the type of an abelian p-group is defined uniquely.

To any type A = [A1,..., ;] corresponds the Young diagram with A; boxes in the
i-th row. For two Young diagrams A = [A1,...,Ag] and g = [p1, ... ], one can define
their product A - p as a formal linear combination of Young diagrams with non-negative
coefficients, see e.g. | , Section 2]. Then the Littlewood—Richardson coefficient 5, is
the coefficient at the Young diagram v = [vy, . .. ] in the product of Young diagrams A-p.

We recall the following criterion, which gives all the possible isomorphism classes of
groups which fit into an exact sequence (2.5), in the case of finite abelian p-groups.

Theorem 2.6 ([ , Section 2]). Let Gp, Hp, and K, be finite abelian p-groups, respec-
tively of types p, A and v. Then an extension of the form

1= Hy, =G, — K, —1
exists if and only if for the Littlewood—Richardson coefficient we have ¢, > 0.

2.3. Groups of product type. We recall the results on finite abelian subgroups of
Cremona groups in lower dimensions. The one-dimensional case is elementary.

Proposition 2.7. Let G be a finite abelian subgroup of Cri(C) = Aut(P!) = PGL(2,C).
Then G is isomorphic to one of the following groups:

(1) Z/n, n>1,

(2) (Z/2)*.

Theorem 2.8 (| D). Let G be a finite abelian subgroup of Cro(C). Then G is isomor-
phic to one of the following groups:
(1) Z/nxZ/m, n>1, m>1,
(2) Z/2n x (Z/2)?, n>1,
(3) (Z/4)2 x Z/2,
(4) (Z/3)°,
(5) (Z/2)".



Definition 2.9. We say that a finite abelian group G is a group of product type if G =
G1 X G5 where G; C Cr;(C). In particular, G is isomorphic to a subgroup in

CI‘1(C) X CI“Q(C) C CI‘3(C)

For example, if for a finite abelian group G we have t(G) < 3, then G is of product
type. Using Proposition 2.7 and Theorem 2.8, we obtain the list of groups of product

type:

G
(1) | Z/kxZ/lxZ/m k>1,1>1, m>1
(2) | Z/2k x (Z/4)* x Z/2 k>1
(3) | Z/3k x (2/3)3 k>1
(4) | Z/2k x Z/21 x (Z/2)* k>1,1>1
(5) | Z/2n x (Z/2)* n>1
6) | (2/9) x (2/2)?
(7) | 2/2)°

Table 2. Groups of product type

The next proposition establishes the main property of finite abelian subgroups in the
Cremona groups of rank 1 and 2.

Proposition 2.10 ([ , Proposition 3.12]). Let H C Cr1(C) and K C Crz(C) be finite
abelian groups. Then an abelian extension G of H by K (or K by H ) is of product type.

The main object of study in this paper is the following class of groups.

Definition 2.11. We say that a finite abelian group G is of K3 type, if G is an abelian
extension of a finite abelian group H that faithfully acts on a K3 surface, by a cyclic
group:

0—-Z/m—G— H—0. (2.12)

Remark 2.13. If the group H from (2.12) is isomorphic to a subgroup of Cry(C), then
by Proposition 2.10 wee see that G is of product type. Hence, to study groups of K3 type
which are not of product type, we may assume that H is not isomorphic to one of the
groups from Theorem 2.8.

2.4. Fermat complete intersections. The main source of examples of the group ac-
tions on algebraic varieties will be given by the following construction. Consider a
weighted projective space

P="P(ag® :...:a}})
where a;* stands for r; > 1 consecutive identical weights a;, and 1 < ag < ... < ap. Put

N =>"r;. Then P is called well-formed, if gcd(a;) = 1 for any set of N — 1 numbers q;.
Let us recall the structure of the automorphism groups of weighted projective spaces, cf.

[Pr520].

Lemma 2.14. Let P = P(qy°,...,a})) be a well-formed weighted projective space, and
1<ap<...<apy. Then Aut(P) = R x L, where R is generated by automorphisms of
the form

[0t - 1 ®Org LU e Ty e SEMA G e M)
(01 1t Tor 111 F P11 By F Pl e TMAFOMA e Moy + OMorar)s

where each ¢, 4 1s a polynomial of degree a; in the variables x; ; withi <p and1 < j <7y,
and L is the quotient of GL,, X -+ X GL,,, by {(t*°L.,,...,t*™1I,.,,),t € C*} = C*.
8



Definition 2.15. We define a Fermat hypersurface of degree d in a well-formed weighted

projective space P = P(ay’ : - - - : a})) as follows:

Xd = {Z :L’ldéaq = O} C P7

where d is divisible by a; for any 3.

Similarly, a Fermat complete intersection of multidegree dy - ... -dy for Kk > 1 in a
well-formed weighted projective space P is given by
d i d / %
Xdr--.'dk = {Z )\i7j;117i73/a =...= Z)\M;kxi)’; = O} C P,

where d, is divisible by a; for any s and any 4, and A; j;s € C.

Remark 2.16. Note that a Fermat hypersurface is a (singular) Fano variety if and only
d< Zij\io r;a;. A Fermat complete intersection is a (singular) Fano variety if and only if
Zf:o di < Eij\iﬂ Tili.
Lemma 2.17. Let X = Xq C P =P(a(° : ---: a}}) be a Fermat hypersurface. Then the
group

G = ((Z/(d/ag))™ x ... x (Z/(d/arn))™)/(Z/d)
faithfully acts on X.

Let X' = Xg4,..a, CP =P(ag’ :---:a}}) be a Fermat complete intersection. Put
d = ged(ds)1<s<k- Then the group

G =(Z/(d[ag))™ x ... x (Z/(d/an))"™)/(Z/d)
faithfully acts on X'.
Proof. Follows from Lemma 2.14. O

2.5. Lattices. We recall some generalities on lattices, see e.g. | , Chapter 14] or
[ ]. By a lattice A we mean a free finitely generated abelian group Z™ equipped with
a symmetric bilinear form

BA:AXA—>Z.

The lattice A is called even if Qa(v) := By (v,v) is even for any v € A.
The dual lattice A* is defined as

AN ={ve A®Q|Ba(v,w) € Z for any w € A},

where the bilinear form By is naturally extended to A ® Q. The discriminant group of A
is defined as

Ay = A*/A.

If By is non-degenerate then A, is a finite abelian group. In this case, its order disc(A) =
|An| is called the discriminant of A. Note that

disc(A) = | det By |,

where by abuse of notation we denote by Bj the Gram matrix of A.
In what follows, by kA we will denote the lattice obtained from a lattice A by multi-
plying all its vectors by k € Z. In particular, we have By = k?By.

2.6. Mori fiber spaces. Let G be a finite group. Recall that a normal projective G-
variety X is called GQ-factorial, if every G-invariant Weil divisor on X is Q-Cartier.
A GQ-Mori fiber space is a GQ-factorial variety X with at worst terminal singularities
together with a G-equivariant contraction f: X — Z to a normal variety Z such that
p¢(X/Z) =1 and —Kx is ample over Z. If Z is a point, we say that X is a GQ-Fano
variety. For more details on G-Mori fiber spaces we refer to | ]
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3. GROUP ACTION ON K3 SURFACES

In this section, we study actions of finite abelian groups on K3 surfaces. By a K3
surface we mean a normal projective surface S with at worst canonical (that is, du Val)
singularities such that H'(S, 0s) = 0 and Ky is linearly trivial.

Let H C Aut(S) be a finite group where S is a smooth projective K3 surface (we always
may assume that S is smooth by passing to the minimal resolution). There is a natural
exact sequence (cf. | D

0—H,—H>Z/m—0, (3.1)

where Z/m is a cyclic group that acts via multiplication by a primitive m-th root of unity
on a non-zero holomorphic 2-form wg on S.

Definition 3.2. Let o be a finite order automorphism of a K3 surface S. Then it is
called a symplectic automorphism, if a(c) = 1. Otherwise, it is called non-symplectic.
Moreover, we call o purely non-symplectic, if ord(a(o)) = ord(o).

A group H acting on S is called symplectic (respectively, non-symplecic, purely non-
symplectic), if every non-trivial element of H is symplectic (respectively, non-symplectic,
purely non-symplectic).

Recall the following classical result.

Theorem 3.3 (| , 4.5]). In the exact sequence (3.1), if the group Hy is abelian, then
it is isomorphic to one of the following groups:

(1) Z/n, 1 <n <8,

(2) Z/2x2]/6,

(3) (2/3)2,

(4) (Z/4)?,

(5) Z/2 x Z/4,

(6) (Z/2)F, 1 <k <4.

Symplectic automorphisms satisfy many nice properties. For example, there is good
control on the number of their fixed points.

Proposition 3.4 (cf. | , 15.1.8]). A symplectic automorphism of finite order on a
smooth K38 surface has finitely many fized points. More precisely, for such an automor-
phism o, if we denote by Fix(o) its fized locus, we have

ord(c) |2[3]4|5
|Fix(o)| | 8 16| 4

Remark 3.5. A Nikulin involution is a symplectic automorphism of order 2 on a smooth
K3 surface. According to Proposition 3.4, the fixed locus of a Nikulin involution consists
of exactly 8 points.

We denote by p(S) the Picard rank of a (smooth) K3 surface S. It is well-known that
1< p(S) < 20.

Proposition 3.6 (cf. | , 15.1.14)). In the exact sequence (3.1), the number m satisfies
m < 66.

Also, if a (purely) non-symplectic automorphism o has order m, the list of all pos-
sibilities for m is given in [ , Corollary 1.3]. For example, if m is prime, then
m € {2,3,5,7,11,13,17,19}.

The next theorem is a generalization of Theorem 3.3 to the case of non-symplectic
groups.

10



Theorem 3.7 ([ ). Let H be a finite abelian group that faithfully acts on a smooth
K3 surface. Assume that H is not purely non-symplectic. If H is assumed to be maximal,
then H is isomorphic to one of the following groups:

(1) (Z/4)?, (11) Z/12 x (Z/2)?,

(2) (Z2/6)* x Z/2, (12) Z/18 x Z2/3,
(3) Z2/6 x (Z/3)?, (18) Z/15 x Z/3,
(4) Z/8 x Z/4 x Z]2, (14) Z/42,
(5) (Z2/2)5, (15) Z/30 x Z/2,
(6) Z/4 x (Z/2)3, (16) Z/28 x Z/2,
(7) Z/12 x Z/6, (17) Z2/24 x Z2/2,
(8) Z/60, (18) Z2/20 x Z2/2,
(9) Z/10 x Z/5, (19) Z/18 x Z2/2,
(10) Z/12 x Z/4, (20) Z/16 x Z/2.
Proof. This comes from the full classification of such groups in [ ]. We list all groups
and the code to find maximal ones in | - O

Remark 3.8. Using Theorem 2.8, one checks that among all the groups in Theorem 3.7,
only the groups (1)-(6) are not isomorphic to a subgroup of Cry(C). However, all the
groups in Theorem 3.7 are isomorphic to subgroups of Cr3(C), and moreover, they are all
of product type, see Table 2.

Corollary 3.9. Let H be one of the groups (1)-(6) from Theorem 5.7. Then the exact
sequence (3.1) splits, so we have

H=H,xZ/m

where Hg is the subgroup of symplectic automorphisms, and Z/m is purely non-symplectic.
More precisely, one of the following holds:

(1) Hs = (2/4)27 m =4,

(2) Hi=2/6 xZ/2, m =6,

(3) H, = (2/3)27 m = 6,

(4) Hi=2/4x2Z/2, m=S§,

(5) H, = (Z/2° m=2,

(6) Hy = (Z/2)3, m =4.

Proof. From the case by case analysis using Theorem 3.7, Theorem 3.3 and the exact
sequence (3.1) we obtain the cases (1)-(6) and one exceptional case H, = (Z/2)* m = 2.
However, the latter case is not realized according to | . (]

We collect some examples of actions of finite abelian groups on K3 surfaces.

Example 3.10. We start with the case of smooth K3 surfaces which are Fermat complete
intersections on which the following group G acts faithfully (cf. Lemma 2.17).

K3 surface Group
(1) | X6 CP(1,1,1,3) (Z/6)2 x Z/2
(2)| X, CP3 (Z2/4)3
(3) | X222 CPS (Z/2)°

Table 3. FExamples of smooth K3 surfaces with the action of a finite abelian group

Example 3.11. Now we treat the case of singular K3 surfaces, cf. | ]. Taking the

minimal resolution of a du Val K3 surface S, we obtain a smooth K3 surface S’ with

the action of the group H. We also describe singularities of S. For example, we write
11



Sing(S) = 341 + 4As, if X has 3 du Val singular points of type A; and 4 singular points
of type As. To compute the group H, one can use Lemma 2.17.

K3 surface Group Singularities
(1) | X44 CP(1,1,2,2,2) Z/4 % (Z2)2)3 4A,
(2) | Xs C P(1,1,2,4) Z/8xZ/4x2Z])2 24,
(3) | X6 C P(1,1,2,2) Z/6 x (Z/3)* 34,
(4) | X12 C P(1,3,4,4) Z/4 x (Z/3)* 3A;
(5) | X12 C P(1,2,3,6) Z/6xZ/4x2Z/2 241 + 24,
(6) | X12 C P(2,3,3,4) (Z/4)? x Z/3 3A; +4A,
(7) | Xe6 C P(1,2,3,3,3) Z/3 % (Z/2)3 4A,
(8) | Xe6 C P(2,2,2,3,3) (Z/3)? x Z/2 94,

Table 4. FExamples of singular K3 surfaces with the action of a finite abelian group

Recall that a Kummer K3 surface is the minimal resolution of the quotient of an abelian
surface A by the multiplication by —1. In the next example, we show the existence of a
Kummer K3 surface with the action of the group H = Z/4 x (Z/2)3.

Example 3.12. Let C; be an elliptic curve with a faithful action of H' = (Z/2)?, and
C5 be an elliptic curve with a faithful action of H” = Z/2 x Z/4 (so that the j-invariant
of Cy is equal to 1728). Note that H' acts on the set of 2-torsion points {a1, az,as, a4}
of Cy transitively, while H” acts on the set of 2-torsion points {by, bz, b3, bs} of Cy with
two orbits of cardinality 2, say, it interchanges b; with b3 and by with by. Consider an
abelian surface A = C; x Cy, which admits the action of H' x H” = (Z/2)* x Z/4. Tt
follows that H' x H" has 2 orbits of cardinality 8. Consider the quotient S = A/c where
o = (01,02), and o; is the multiplication by —1 on E;. Then S is a K3 surface with
16 singular points of type A;. From the construction it follows that S admits a faithful
action of H = (H' x H")/(Z/2) = (Z/2) x Z/4. One checks that if C; and Cy are
isogenous then p(S’) = 20 where S’ is the minimal resolution of S.

Example 3.13. Similarly to Example 3.12, one can construct a Kummer K3 surface S
with 16 A; singularities that admits a faithful action of H = (Z/2)®. Note that all the
singular points of S lie in the same H-orbit in this case. As in the previous case, the
Picard rank of the minimal resolution S’ of S is equal to 20.

4. K3 SURFACES: LATTICES

Let S be a smooth projective K3 surface. Consider the second cohomology group
H2(S,2Z) as a lattice Ax3 endowed with the cup product. It is well-known that Agz =
U®3 @ FEg(—1)®? where U is the hyperbolic lattice, Es is the unique positive-definite,
even, unimodular lattice of rank 8, and Eg(—1) means that we multiply the bilinear form
of Eg by —1. Recall that on a K3 surface S we have Pic(S) = NS(S), and

NS(S) = {x € H*(S,2Z) | - ws = 0} = H"1(S,2),

where wg is (the class of) a non-zero holomorphic 2-form on S. The transcendental lattice
T(S) is defined as follows:

Ts = NS(S)* c H?(S, Z).
It follows that the sublattice
NS(S) @ Ts c H*(S,Z)

has finite index, equal to the discriminant of NS(S) and Ts.
12



Example 4.1. For a Fermat quartic surface S; C P3, according to [ , 3.2.6], one has
NS(S4) = Es(-1)®*2 @ U & Z(—8) ® Z(-8), Ts = Z(8) @ Z(8).
In particular, one has p(S4) = 20.

Lemma 4.2. Let S be a smooth K3 surface with a faithful action of a finite group H. If
the action of H on S is non-symplectic, then NS(S)H = H?(S,Z)H.

Proof. Consider an element z € H2(S, Z)H. Consider its decomposition = x99+ 1,1 +
To2 as an element of H(S, C) where x5 € H>Y(S), 211 € HY(9), and zo 2 € H*?(S).
Then for a non-symplectic element h € H we have

h*(I> = h*<$2’0) + h*(-TLl) + h*(aﬁo,g) =220+ 1,1+ To2 = 2.

Since h acts on the generator of H29(S) (respectively, of H%2(S)) non-trivially, it follows
that 229 = 0 (respectively, 292 = 0). Hence x = x1; € H%(S,Z) N HM(S) = NS(S).
Thus, H2(S,Z)" < NS(S)#, and the claim follows. O

Using Corollary 3.9, we obtain the following.
Corollary 4.3. For the groups (1)-(6) as in Theorem 3.7 we have NS(S)# = H?(S,Z)H.
The following proposition is crucial to our work.

Proposition 4.4. Let H be one of the groups (1)-(6) in Theorem 3.7, and let S be
a smooth K3 surface with a faithful action of H. Let M be the intersection matrixz on
H2(S,Z2)". Put r =tk H?(S,Z)". Then one of the following cases holds.

(1) H=(Z/4)>, r=1, M = (4),

(2) H=(2/6)xZ/2, r=1, M =(2),

(3) H=2/6x(Z/3)?2, r=2 M= (g g)

() H=2Z/8xZ/AxZ/2, r=2, M:(O 2),

2 0
(5) H=(Z/2)°, 1<r<5,
(6) H=2Z/4x(Z/2)3, 2<r<6.

Proof. Follows from the database provided by | ] |

The possible intersection matrices for the cases (5) and (6) in Proposition 4.4 are
presented in the Appendix.

Lemma 4.5. Assume that a finite group H faithfully acts on a K3 surface S with at worst
du Val singularities. Let f: S" — S be the minimal resolution, which is automatically H -
equivariant. Put r =tk H2(S',Z)®. Then the following holds.
(1) If r =1, then S is smooth.
(2) If r = 2, then the f-exceptional (—2)-curves on S’ form one H-orbit, and the
singular points of S form one H-orbit.

Proof. Assume that r = 1. Then for the H-invariant Picard number of S’ we have
pH(S’) = 1. Since S is projective, we get p (S) > 1, and so p(S) = 1. It follows that f
is an isomorphism, so S is smooth.

Assume that » = 2. Since the f-exceptional (—2)-curves are linearly independent in
NS(S"), it follows that the H-orbits of f-exceptional (—2)-curves are linearly independent
in NS ($’). Let A be an H-invariant ample divisor on S, and let A’ = f*A be an
H-invariant divisor on S’ with A”> > 0. Note that the f-exceptional (—2)-curves are
orthogonal to A’. Since r = 2, we conclude that p(S’) < 2. Thus, the f-exceptional
(—2)-curves on S’ form one H-orbit, and hence the singular points on S form one H-
orbit. (]
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Corollary 4.6. Let H be a group isomorphic to (Z/4)® or (Z/6)? x Z/2. Then any K3
surface with a faithful action of H is smooth.

Proof. Follows from Proposition 4.4 and Lemma 4.5. O

Corollary 4.7. Let H be a group isomorphic to Z/8xZ/4xZ/2 or Z/6x (Z/3)? faithfully
acting on a K3 surface S. Let f: 8" — S be the minimal resolution. Then H acts on the
set of f-exceptional (—2)-curves transitively. In particular, singularities on S form one
H-orbit, and they can be only of type A1 or As.

Proof. Follows from Proposition 4.4 and Lemma 4.5. The last claim follows by looking
at the dual graphs of the minimal resolution of du Val singularities. O

Remark 4.8. Let S be a K3 surface with du Val singularities endowed with the action
of a finite abelian group H. Let f: S’ — S be the minimal resolution. Note that f is
automatically H-equivariant. Then

NS(S,)Q = f*NS(S)Q @ Vo

where V' = (E;) is the subgroup in NS(S’) spanned by the f-exceptional (—2)-curves E;,
and Vo =V ® Q. However, it is not true that

NS(S’) = f*NS(S) @ V.
Indeed, otherwise we would have
NS(S")# = f*NS(S)" @ VH,
which is not the case, as the following example shows.

Example 4.9. Consider a K3 surface S as in Example 3.11(2) with the action of the
group H =Z/8%xZ/4xZ/2. Let f: S’ — S be the minimal resolution. By Proposition 4.4
we have that A = NS(S")# is the lattice with the Gram matrix

0 2
(0 2).
A = f*NS(S) o VH

where V' = (E;) is a subgroup in NS(S’) spanned by the f-exceptional (—2)-curves F;
and Fy, and V¥ is spanned by their H-orbit E; + E,. Then A’ has the Gram matrix

4 0
b= ()

We have that p(S) = 1, and NS(S)# = Z[2A] where A is the restriction of (1) in
P(1,1,2,4) to S, so that A2 = 1. Then the lattice 2A = 2NS(S")#, which has the Gram

matrix
0 8
BZA - (8 0) )

is a sublattice of A’. We have the inclusions 2A C A’ C A.

Put

Proposition 4.10. We have
uNS(S") C f*NS(S) @ V C NS(S).

where V. = (E;) is a subgroup in NS(S’) spanned by the f-exceptional (—2)-curves E;,
and p is the index of C1(S) in NS(S) = Pic(S). Similarly, we have

uNS(SH c f*NS($)! @ VH < NS(S")H. (4.11)
Consequently,
disc(NS(S")) | disc(NS(S)H)detV | p* disc(NS(S)H), (4.12)

where p is the rank of NS(S")H.
14



Proof. Let D € NS(S")H. Then f*f.D = D+ a;E; where E; € V and a; € %Z. Hence,

ufeD € NS(S), and puf* f.D belongs to f*NS(S)*. Thus, u(f*f.D — D) € V. This
shows (4.11). Then (4.12) follows by taking the discriminants of the lattices in (4.11). O

5. TERMINAL SINGULARITIES

In this section we recall the classification of three-dimensional terminal singularities,
cf. [Mo85], [Re85]. Let x € X be a germ of a three-dimensional terminal singularity.
Then the singularity is isolated: Sing(X) = {z}. The index of x € X is the minimal
positive integer r such that rKx is Cartier.

If r =1, then z € X is Gorenstein. In this case x € X is analytically isomorphic to a
hypersurface singularity in C* of multiplicity 2. Moreover, any Weil Q-Cartier divisor D
on z € X is Cartier. Also, in this case x € X is a compound du Val singularity, which
means that its general hyperplane section H that contains x is a surface with a du Val
singularity at . We say that € X has type cA, ¢D, cFE, respectively, if z € H is a du
Val singularity of type A, D, E, respectively.

If r > 1, then there is a cyclic étale outside = covering

m7cX X2

of degree r such that ¥ € X is a Gorenstein terminal singularity (or a smooth point),
and 7=1(z) = . The map 7 is called the indez-one cover of x € X, and it is defined
canonically.

Theorem 5.1 ([Mo85, Re85]). Let x € X be a three-dimensional terminal singularity of
index v > 1. Then x € X is analytically isomorphic to the quotient {¢ = 0}/(Z/r) of a
hypersurface C* defined by the equation

¢(£1,...,$4) = O7

where the group Z/r acts on C* such that the coordinates x; and the equation ¢ are
semi-invariant. Moreover, up to an analytic Z/r-equivariant coordinate change, the hy-
persurface ¢ = 0 and the Z/r-action are described by one of the rows in the following
table (where m denotes the maximal ideal of x € X, and the last number in the weights
vector is the weight of ¢):

Type Index o(x1, 22,23, 24) Weights
cA/r r>1 r122 + P(ah, 24) (1,-1,a, O ;0),
(r,a) =

cAx/2 r=2 2?2 + 23 + (w3, 14), Y € m? (0,1,1,1,0)

c¢D/2 r=2 23 + (1, 22, 73), ¥ € m3 with z20m3 | (1,1,0,1;0)
or z3w3 € ¢

cE/2 r=2 o3+ 23 + (22, 23)w1 +0(22,73), 0 ¢ M5 | (0,1,1,1;0)

cD/3 r=3 23 +1(11, 22, 23) wWith o3 = 23+ 23+ 23 | (1,2,2,0;0)
or J;:f + x2x§ or x‘I’ + acg

cAx/4 r=4 22 + 23 + (23, 24), Y € m3 (1,3,1,2;2)

Table 5. Terminal singularities
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5.1. Basket of singularities. For a three-dimensonal terminal singularity € X there
is a deformation to k > 1 terminal cyclic quotient singularities x1, ..., zr. We may assume
that the singularities z; have type T%(l, —1,b;) where 0 < b; < r;/2. The set {z1,..., 2}
is called the basket of singularities of x € X and it can be written as

3
By the basket of singularities of X, denoted by B(X), we mean the union of all baskets
of x € X for all non-Gorenstein singular points = € X.

If z € X is a three-dimensonal non-Gorenstein terminal singularity of index r, then in
its basket of cyclic quotient singularities all the points in the basket have index r, except
in the case when x € X is of type cAz/4, in which case one of the points in the basket
has index 4, and all the other points in the basket have index 2. Moreover, if x € X is
not a quotient singularity itself, then in the basket of x € X there are at least two points.

5.2. Orbifold Riemann-Roch. By | , 10.2], for a projective terminal threefold X
and a Weil Q-Cartier divisor D on it we have the following version of the Riemann-Roch
formula:

X(0x(D)) = x(0x) + 5 DD~ Kx)(2D ~ Kx) + 5D ex(X) + Y cq(D) (5.2

where for any cyclic quotient singularity @) we have

r2—1 i_lbijr—bij
cq(D) = ~i—- +> (2r ). (5.3)

Here r is the index of @, the divisor D has type i%(a, —a,1) at Q, b satisfies ab = 1 mod r,
and - denotes the residue modulo r. For non-cyclic non-Gorenstein singularities, their
contribution to the right-hand side of (5.2) is computed in terms of their basket of cyclic
points. Moreover, by | , 10.3] (see | , Theorem 12.1.3] in the case of GQ-Fano
threefolds) one has

(-Kx)- +Z r—1/r) =24 (5.4)

Since (—Kx) - c2(X) > 0, we see that the number of non-Gorenstein singular points is at
most 15.

5.3. Geometry of the flag x € S C X. We start with the following lemma which is
well-known to experts.

Lemma 5.5. Let x € X be a germ of a threefold terminal singularity. Let S € | — Kx|
be an anti-canonical element, and assume that x € X is not a smooth point. Then x is a
singular point on S.

Proof. The claim is clear if x is a Gorenstein point. Assume that z is non-Gorenstein of
index r > 1. Consider the index-one cover 7: X — X which is étale of degree r outside z.
Assume that S is smooth at z. Put 7~1(S) = S. Then 7r|~~' S\ {Z} = S\ {z} is
étale outside x as well. Since by assumption S is smooth at z, it follows that S\ {z} is
simply-connected. Hence the cover w\s\{ } : S\ {F} — S\ {x} splits, so that 5 = 3 5,

and S; N SJ = {Z} for i # j. However, since rS is Cartier, it follows that rS is Cartier as

well, and hence Cohen-Macaulay (here we use the fact that three-dimensional terminal

singularities are Cohen-Macaulay). Thus, S\ {Z} should be connected, which is not the

case. This leads to a contradiction, which shows that S is singular at z. The claim

follows. O
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Remark 5.6. Let z € S be a germ of a du Val singularity. Let 7§°(S \ {x}) be the
abelianization of the local fundamental group. Then there are the following possibilities
for 7¢%(S'\ {z}) according to the type of singularity:

(1) Z/(n+1) for type A,,
2) Z/2® Z/2 for type D, for even n > 4,
3) Z/2 for type D, for odd n > 5,
4) Z/3 for type Eg,
5) Z/2 for type E7,

(6) 0 for type Es.
It is also known that the exponent of 7§°(S \ {z}) is equal to the index of the local class
group Cl(z € S) in the local Picard group Pic(x € 5).

(
(
(
(

Let € X be the germ of a threefold terminal singularity of index r» > 1, and let
S € | — Kx| be an anti-canonical element. Assume that the pair (X, S) is plt. Let 7: ¥ €
X — X 3 z be the index-one cover. Note that 7 induces a cover 7T|§Z ieS—S>u
There exists the following diagram:

7eX "5 X35z

T . T (5.7)

TeS—s 8>z
Proposition 5.8. Assume that the induced map 7r|§\{;}: S\{Z} — S\ {x} is a non-split
cyclic étale covering of degree k. Then r divides |73°(S \ {x})].

Proof. Note that TR corresponds to a subgroup H of w¢P(S\ {z}) such that 73 (S \
{z})/H = Z/k. In particular, if x € S C X where z € X is a non-Gorenstein threefold
terminal point of index r and S € | — Kx| has du Val singularities, then 7r|§\ & is

non-split (see the proof of Lemma 5.5) cyclic étale covering of degree r, hence r divides

7S\ {z})]. 0

We consider two cases: when z € X is a cyclic quotient singularity, so (7 € X) ~
(0 € C3), and when z € X is not a cyclic quotient singularity, so (Z € X) C (0 € C*).
Note that in the latter case S is a Cartier divisor on X C C%, hence S is singular at .
Moreover, since by assumption the pair (X, S) is plt, it follows that the pair ()Z' , S ) is plt
as well, so ¥ € S is a du Val singularity.

Proposition 5.9. Assume that x € X is a threefold cyclic quotient singularity of index
r>1. Ifx € S is smooth then x € S has type A,_1.

Proof. By assumption, Z € S is smooth, so (Z € S) ~ (0 € C2). Hence the non-
split degree r cyclic covering 7r|§\ Ik S\ {z} — S\ {z} is a universal covering. It

follows that m1(S \ {z}) is a group of order r. Since 7| is a cyclic covering, the

X\{z}
group of deck transformations of | G is cyclic of order r. Thus, the group of deck
transformations of 7r|§\ & contains an element of order r. Since |m (S \ {z})| = r, it

follows that 71 (S \ {z}) = Z/r. This implies that x € S is a singular point of type
Ar—1~ [l

5.4. Group action on a terminal singularity. Let X be a GQ-Fano threefold where
G is a finite abelian group. Let z € X be a germ of a terminal singularity. Assume there
exists a G-invariant element S € | — K x| which is a K3 surface with du Val singularities.
Then there is an exact sequence

0—-2Z/m—G— H—0, (5.10)
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where H faithfully acts on S, and Z/m faithfully acts in the normal bundle to S in X for
some m > 1. Let G, and H, be the stabilizers of = in G and H, respectively. Thus, we
obtain the exact sequence

0—-2Z/m— G, - H, — 0. (5.11)

Theorem 5.12 (| , Theorem 7.3]). Let x € X be a germ of a threefold terminal
singularity and let G, C Aut(x € X) be a finite abelian subgroup. Then either v(G,) < 3,
or

G = (Z/2)* xZ/2n x Z/2m
for n,m > 1. Moreover, in the latter case x € X is a Gorenstein singularity of type cA.
In particular, in both cases G is of product type.

The diagram (5.7) induces the following diagram:

H l J (5.13)
0—— Z/r H, H, 0
where éz is Ehe liftirgg/ of G, and IAi:x is the liicing of H,. This means that C:'m faithfully

acts on z € X, and H, faithfully acts on = € S.

Proposition 5.14. Assume that
e citherr > 2 |
e or Gy is a 2-group.
Then the lifting G, is abelian.

Proof. The first claim is | , Proposition 7.13]. The second claim follows from the
proof of | , Proposition 7.18]. O

Proposition 5.15. Assume that x € X is a threefold cyclic quotient singularity of index
r>1. If 2 € S is singular then G is of product type.

Proof. Since T;S = T;X = C3, by Lemma 2.1 we know that G, = H,, and hence
G, = H,. It follows that in the exact sequences (5.11) and (5.10) we have m = 1. Thus,
we have G = H. Therefore G is of product type by Remark 3.8. 0

Corollary 5.16. Assume that x € X is a threefold cyclic quotient singularity of index
r > 1. Then either G is of product type, or x € S is smooth and x € S is a singularity of
type Ar_1.

Proof. Follows from Proposition 5.9 and Proposition 5.15. O

Remark 5.17. Assume that z € X is a threefold cyclic quotient singularity of index
r > 1. Assume that Z € S is smooth, so (Z € S) ~ (0 € C2). Then there exists an
injective homomorphism H, — G, which is inverse to the map G, — H, in (5.13). In
particular, we have G, = H, x Z/r.

Proposition 5.18. Assume that x € X is a threefold terminal non-Gorenstein singularity
which is not a cyclic quotient singularity. Then the singular point x € S cannot be of
type Ay or As. In particular, the action of H on the set of (—2)-curves on the minimal
resolution S’ of S cannot be transitive.

Proof. By Lemma 5.5, the point x € S is singular. Since z € X is not a cyclic quotient

singularity, we have that = € X is singular. Since S is Cartier at the point Z in X, we

see that the point T € S is singular as well, and it is a du Val singularity. Hence the

map 7T|§\ & S\ {#} - S\ {z} is a non-trivial covering which is not universal. Thus,
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7 € S cannot be of type A; or Ay, because in these cases S \ {«} does not admit such a
covering, cf. Remark 5.6. The last claim follows from looking at the dual graphs of the
exceptional curves on the minimal resolution of S. ([

6. CASE ho(—Kx) >2

Let X be a GQ-Fano threefold where G is a finite abelian group. Throughout this
section we assume that h°(X,0(—Kx)) > 2, and that all the G-invariant elements in
| — Kx| are K3 surfaces with at worst canonical singularities. Let S and S” be two such
surfaces. Consider exact sequences

0—-C—=G— H—=0, 0—-C'"-G—H =0 (6.1)

where H (respectively, H') faithfully acts on S (respectively, S’), and C = Z/m (respec-
tively, C' = Z/m/) fixes S (respectively, S’) pointwise.

Lemma 6.2. We have that C (respectively, C') faithfully acts on S’ (respectively, S),
and this action is purely non-symplectic. In particular, we have C N C" = {id}, and the
maps C — H' and C' — H induced by the exact sequences (6.1) are injective.

Proof. Assume that C does not act faithfully on S’. Then there is a non-trivial element
g € C acting trivially on S’. The fixed locus of g contains SUS’, hence it is singular along
a curve SN.S’. This is impossible by Lemma 2.3. Finally, expressing the volume form on
S’ in local coordinates at the general point x € SN .S’, we see that the action of C' on S’
is purely non-symplectic. The claim for the action of C’ on S follows by symmetry. O

From Remark 2.13, Corollary 3.9 and Lemma 6.2 we immediately obtain
Corollary 6.3. FEither G is of product type, or m,m’ € {1,2,3,4,6,8}.
Lemma 6.4. If both exact sequences (6.1) do not split, then G is of product type.

Proof. By symmetry, it is enough to prove the result for the first exact sequence in (6.1).
We have G = G, X --- X Gp,, and Gp, is an abelian group which fits in a short exact
sequence of the form

0—=Cp, = Gp, = Hp, =0,

where C), and G, are p;-Sylow subgroups of C' and H, respectively. We will proceed as
follows.

(1) We fix an isomorphism class for G, among the groups (1)—(6) in Theorem 3.7.
(2) For each m € {1,2,3,4,6,8}, we use Theorem 2.6 to compute all possible classes
of p-Sylow subgroups G, of G.
(3) We deduce the possible isomorphism classes for G.
Applying systematically this method, we obtain the following. We have C' = Z/m. As-
sume that G is not isomorphic to Z/m x H and that v(G) > 3 (recall that if ¢(G) < 3 then
G is of product type). Then for m € {1,2,3,4,6,8} we have the following possibilities.
e H = (Z/4)3. Then we have the following possibilities
(1) m=4,G=2Z/8 x (Z/4)* x Z/2,
(2) m=8,G=2Z/16 x (Z/4)* x Z/2.

o H=27/8xZ/4x Z/2. Then we have the following
(1) m=4,G=2Z/16 x Z/4 x (Z/2)?, or G = (Z/8)* x (Z/2)?,
(2) m=8,G=2/32xZ/4x(Z)2)2 or G=2Z/16 x Z/8 x (Z/2)?, or G =
Z/16 x (Z/4)* x Z/2.
e H=27/4x(Z/2)3. Then
(1) m=2,G=2/8x(Z/2)3, or G=(Z/4)* x (Z/2)?,
(2) m=4,G=2Z/16x(Z/2)3, 0or G =Z/8x(Z/2)*, or G =Z/8xZ/4x (Z/2)?,
(3) m=6,G=2Z/24x(Z/2)3,
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(4) m=8,G=2/32x(Z/2)3, or G=2Z/16 x Z/4 x (Z/2)?, or G = Z/16 x
(Z/2)%.
o H=2/2x(Z/3)3 In this case we always have t(G) < 3.
o H=(Z/3)? x (Z/2)3. We obtain that t(G) < 3, or that G = Z/m x H.
o H=1(Z/2)% G=2Z/2" x(Z/2)* with2<i<4,or G=2Z/12x (Z/2)*.
Among all these possibilities, we see that if G is not isomorphic to Z/m x H, then G is
of product type. (I

Theorem 6.5. Assume that X is a GQ-Fano threefold with h°(—Kx) > 2 where G is a
finite abelian group. If G is of K3 type and not of product type then G is isomorphic to
one of the following groups:

(1) (Z/4)%,

(2) (Z/8)* xZ/4 x Z/2,

(3) (2/6)% x (Z/3)%,

(4) (Z/6)* x Z/2.
Proof. By Lemma 6.4, we may assume that G = C x H, where C = Z/m and H is
one of the groups (1)—(6) as in Theorem 3.7. Moreover, by symmetry we have that G is
isomorphic to C’ x H' where C' = Z/m/, and by Lemma 6.2 we get C C H' and C' C H.
We will proceed in the following way.

(1) For a given group H from the groups (1)—(6) in Theorem 3.7, we deduce the

possibilities for C”.

(2) For a given pair (H,C"), we find all the possibilities for m.

We obtain the following possible configurations.
o H=(2Z/4)3.

C{ld} [ z/2] Z/4
m | 1 | 1,2 | 124

The group G is isomorphic to a subgroup of (Z/4)%.

H=27Z/8xZ/4xZ]2.

CT{d) [ Z/2] Z/a | Z/8
m | 1 |12 1241248

The group G is isomorphic to a subgroup of (Z/8)% x Z/4 x Z/2.
H=2Z/4x(Z/2)3.

C[{ld} [ z/2] Z/4
m | 1 | 1,2 124

The group G is isomorphic to a subgroup of (Z/4)? x (Z/2)3, which is of product

type.
H=2/6x(Z/3)2.

cT{dar[z/2]z/3] /6
m | 1 | 12| 1,3 |1236

The group G is isomorphic to a subgroup of (Z/6)? x (Z/3)3.
H=(Z/6)* x Z/2.

CTT{dy [ Z/2]Z/3] Z/6
m | 1 |12 1,3 ]1,236

The group G is isomorphic to a subgroup of (Z/6)3 x Z/2.
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o H=(Z/2)5.

CTT{id} [ Z/2
1 [ 1.2

The group G is isomorphic to a subgroup of (Z/2)8, which is of product type.
(I

7. ORBITS OF NON-(GORENSTEIN POINTS

In this section, we study the orbits of non-Gorenstein points under the action of a finite
abelian group. Let G be a finite abelian group, and let X be a 3-dimensional GQ-Fano
variety. Assume that the set of non-Gorenstein singularities of X is non-empty. Let us
denote the set of all non-Gorenstein points of X as follows:

kl X Pl, kg X PQ, ceey kl X B, kl Z 1 (71)

for I > 1 where each P; € X is a germ of a terminal non-Gorenstein singularity of index
r; > 1, and k; x P; means that we have exactly k; singular points of X locally analytically
isomorphic to P; € X. In particular, P; € X and P; € X are not locally analytically
isomorphic for i # j. Hence, each set {k; x P;} for 1 <14 <[ splits into G-orbits.

Assume that the pair (X, S) is plt where S € | — Kx| is a G-invariant element. Then
S is a K3 surface with at worst canonical singularities. We have the following exact
sequence:

0—-Z/m—-G—H—=0 (7.2)

where H faithfully acts on S, and m > 1. By Lemma 5.5, we see that S has at least
k1+...+k; du Val singularities that correspond to non-Gorenstein singularities on X. We
denote by f: S’ — S the H-equivariant minimal resolution of S, so that S’ is a smooth
K3 surface with a faithful action of H. According to Remark 2.13, either G is of product
type, or H is one of the groups (1)—(6) as in Proposition 4.4. We examine them case by
case.

Lemma 7.3. The group H in (7.2) is not isomorphic either to (Z/6)? xZ/2 or to (Z/4)3.

Proof. By Corollary 4.6, in this case S is a smooth K3 surface. However, this contradicts
the assumption [ > 1 and Lemma 5.5. (]

Lemma 7.4. If H=27/8 xZ/4 x Z/2 and G is not of product type, then l =1 and k;
is even. Morever, the action of H (as well as G) on the set {k; x P} is transitive. In
particular, ki divides 64.

Proof. By Corollary 4.7, there exists at most one H-orbit of singular points of S. By
Lemma 5.5 it follows that there exists at most one G-orbit of non-Gorenstein singular
points on X. Thus, we have [ = 1, and the action of G on the set {k; x P;} is transitive.
If k1 is odd, then G has a fixed point, so by Theorem 5.12 we have that G is of product
type. The last claim follows from the orbit-stabilizer theorem. (I

Lemma 7.5. If H = Z/6 x (Z/3)? and G is not of product type, then | = 1, and k; is
divisible by 3. Moreover, the action of H (as well as G) on the set {k; x Py} is transitive.
In particular, ki divides 54.

Proof. We denote by G3 the 3-Sylow subgroup of G. As in the proof of Lemma 7.4, by

Lemma 5.5 and Corollary 4.7 we have | = 1, and the action of G on the set {k; x P1} is

transitive. If k; is not divisible by 3, then G3 has a fixed point. We deduce from Theorem

5.12 that the 3-Sylow subgroup Gj is of rank 3. For p # 3, since t(H,) < 1, we have

t(Gp) < 2. We deduce that ¢(G) < 3. Thus G is of product type. The last claim follows

from the orbit-stabilizer theorem. O
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Lemma 7.6. If H = (Z/2)° and G is not of product type, then the non-Gorenstein locus
of X is composed of orbits whose lengths are multiples of 8. In particular, we have that
k; is divisible by 8 for alli € {1,...,1}.

Proof. We denote by G5 the 2-Sylow subgroup of G. If there exists i € {1,...,1} such that
k; is not divisible by 8, then G has an orbit of length 1,2, or 4. But since H = (Z/2)?,
the group Gy is of the form Z/2F x (Z/2)°, for some k > 1, or Z/2% x (Z/2)*, for some
k > 1. Hence, all subgroups of G5 of index 1 or 2 have rank at least 4, and Theorem 5.12
implies that G2 cannot have an orbit of length 1 or 2. Assume there exists an orbit of
length 4. Then G2 has a subgroup of rank 3 or 4 fixing a point, and the latter is excluded
by the same result. So G2 has a subgroup of index 4 and rank 3, which implies that Gs
is of the form Z/2% x (Z/2)%, for some k > 1. But then G is of product type. O

Lemma 7.7. If H = Z/4x (Z/2)? and G is not of product type, then the non-Gorenstein
locus of X is composed of orbits whose lengths are multiples of 4. In particular, we have
that k; is divisible by 4 for all i € {1,...,1}.

Proof. We denote by Go the 2-Sylow subgroup of G. If there exists ¢ € {1,...,1} such
that k; is not divisible by 4, then G5 has an orbit of length 1 or 2. The first case is
excluded by Theorem 5.12, since 7(G3) > r(H) = 4. If G5 has a subgroup G4 of index 2
fixing a point, then G} is of rank 3, and we deduce that either r(G3) < 3, and hence G
is of product type, or Go = Z/2F x Z/4 x (Z/2)? for k > 1, or Gy = Z /2% x (Z/2)3, with
k > 2. In all cases, the group G is of product type. (]

We obtain the following.

Corollary 7.8. Either G is of product type, or ged(ky, ..., k;) is divisible either by 2 or
by 3, where k; are as in (7.1). In particular, if gcd(ky, ..., k) = 1 then G is of product

type.

Now let us denote all the cyclic quotient singularities in the basket of X (see Section
5.1) as follows:

tl X Qh t2 X Q2a ceey ts X QS7 ti 2 17 (79)

for s > 1 where each Q; € X is a germ of a cyclic quotient singularity of index r} > 1, and
t; X Q; means that we have exactly ¢; singular points of X locally analytically isomorphic
to @; € X. We assume that @; and ¢); € X are not locally analytically isomorphic for
i # j. From Corollary 7.8 we obtain the following.

Corollary 7.10. FEither G is of product type, or ged(ty,...,t;) is divisible either by 2 or
by 3. In particular, if ged(ty,...,t;) = 1 then G is of product type.

After applying Corollary 7.10 as well as Lemmas 7.3-7.7 to all the Fano threefolds of
Fano index 1 and Fano genus —1, which we went through using the Graded Ring Database
[ ], and taking off the baskets consisting only of singularities of type 3(1,1,1) which
will be treated in Section 8, we end up with the following result.

Proposition 7.11. Let X be a GQ-Fano threefold where G is a finite abelian group.
Assume that h°(—Kx) = 1. If G is not of product type, then the Fano index of X is at
most 4. Furthermore, either the basket of X only consists of points of type %(17 1,1), or
its basket is among the following possibilities.

Basket of singularities of X Possibilities for H
2% 15(3,7,1) Z/8xZ/4AxZ/2
2% $(4,7,1) Z/8xZ[AxZ)2

22



Basket of singularities of X Possibilities for H
6X%(1’3’1) Z/8xZ/4x2Z]2,
Z/6 x (Z2/3)?
2% $(2,7,1) Z/8xZJ4xZ)2
6X%(17171)’2X%(17 i1 Z/8XZ/AxZ]2
4x1(1,1,1),4 x £(1,2,1 Z/4x (2/2)3
4% £(2,3,1) Z/8x Z/Ax Z/2,
Z/4 % (Z/2)
4x 3(1,1,1),4 x 1(1,3,1) Z/8xZ/AxZ/)2,
Z/4 % (Z)2)3
ZXﬁ(&&l) Z/8XZ/AxZ/2
8 x £(1,2,1) (2/2)°,
Z/1% (Z/2)?,
Z/8xZ/4xZ]2
3 x %(275, 1) Z/6>< (2/3)2
3x 3(3,4,1) Z/6 x (2/3)?
6x 3(1,1,1),3 x 1(1,3,1) Z/6 x (Z/3)?
2 x 5(2,9,1) Z/8x Z/AxZ)2
8x 3(1,1,1),2 x 1(1,3,1) Z/8xZ[4AxZ)2
10 x 1(1,1,1),2 x 1(1,3,1) Z/8xZ/4xZ)2
8x £(1,1,1),4 x (1,2,1) Z/4x (Z)2)3

Table 6. Possible baskets of singularities on X of index 1 and corresponding groups H

Basket of singularities of X Possibilities for H
2% £(1,2,2),2 x 1(3,4,2) Z/8xZ/4xZ)2
4% 3(1,2,2),2 x £(1,4,2) Z/8xZ[4AxZ)2

2 x 1(2,3,2),2 x £(1,6,2) Z/8xZJ4xZ)2
2% $(4,7,2) Z/8$x Z/Ax Z/2
2x £(1,4,2),2 x £(3,4,2 Z/8xZ/Ax Z)2
3% £(1,2,2),3 x 1(1,4,2 Z/6 x (Z/3)?

3% 7(3,4,2) Z/6 % (2/3)

2% £(1,2,2),2 x £(4,5,2) Z/8xZ/4xZ)2

Table 7. Possible baskets of singularities on X of index 2 and corresponding groups H

Basket of singularities of X

Possibilities for H

4% 1(1,4,3)

Z/8xZ/4xZ/2,
Z/4x(Z)2)3

2 % 3(1, 2% £(1,7,3 Z/8xZ/AxZ)2
4% £(1,1,1),2 x £(1,6,3 Z/8xZ/AxZ/2

Table 8. Possible baskets of singularities on X of index 3 and corresponding groups H
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Basket of singularities of X Possibilities for H
2% §(2,7,4) Z/8xZ/Ax Z/2

3 x 7(1,6,4) Z/6 x (Z/3)?

4% 2(1,2,1),2 x 1(1,4,4) Z/8x Z/4xZ/2
2% £(2,3,4),2 x £(1,6,4) Z/8x Z/4 x Z/2

Table 9. Possible baskets of singularities on X of index 4 and corresponding groups H

Proof. When the Fano index is 1 or 2, all possibilities of the baskets of singularities of
a genus -1 Fano threefold are classified in the Graded Ring Database [ |, using
the method described in | ]. Going through the possibilities of baskets and apply
Lemmas 7.4 to 7.7, we obtain Tables 6 and 7.

When the Fano index is greater than 2, we apply numerical conditions as in | ,
Section 2] to find all possible baskets of singularities, use the lower bound for the genus
as in | , Corollary 2.7] to find possibilities for those which can be realized on genus
-1 Fano threefolds, and Lemmas 7.4 to 7.7 to obtain Tables 8 and 9. In particular, we
find that the Fano index of X is possibly at most 4. Note that this does not guarantee
the existence of such Fano threefolds with singularities listed in Tables 8 or 9.

We include the magma code to produce Tables 6,7,8, and 9 in | ]. O

Proposition 7.12. If X has index 2, then G is of product type.

Proof. Since the number of points of the same type in the basket of X in each case of
Table 7 is at most 4, we get that either the non-Gorenstein points on X are cyclic quotient
singularities, or G has a fixed point on X. In the latter case, G is of product type, hence
we may assume that the former case is realized.

Using Corollary 5.16, we may assume that a cyclic quotient singularity z € X of index r
corresponds to a singular point € S of type A,_; on S. Note that in each case of Table 7
we have r > 2. On the other hand, the group H is isomorphic either to Z/8 x Z/4 x Z/2,
or to Z/6 x (Z/3)2. But this is a contradiction with Corollary 4.7. O

Proposition 7.13. If X has index 3 or 4, then G is of product type.

Proof. Note that the all the baskets from Table 9 also can be found in Tables 6 and 7
(possibly, with different weights of the cyclic group action). Since our arguments in fact
do not use the values of the weights, we see that in the index 4 case G is of product
type. Similarly, the first case in Table 8 can be found in Table 6 (again, up to changing
the weights). Two remaining cases in Table 8 are dealt with similarly to the proof of
Proposition 7.12. O

8. CAsSE h’(—Kx) =1 WITH HALF-POINTS

To illustrate our approach, we treat the case when the non-Gorenstein points of X
have type %(1, 1,1). Informally, we call them half-points. The main goal of this section is
to prove the following

Theorem 8.1. Let X be a GQ-Fano threefold where G is a finite abelian group. Assume
that h°(—=Kx) = 1. Also, assume that the non-Gorenstein locus of X consists only of
points of type %(1, 1,1). Then G is of product type.

Proposition 8.2. Assume that all the terminal non-Gorenstein points of X have type

1(1,1,1). Then 9 < N < 15.

Proof. Since h%(X,—Kx) = 1, we see that X is non-Gorenstein. For D = —Ky and
singular points of type %(1, 1,1) we have cg = —1/8, so if there are N such points, in the
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formula (5.2) they give a contribution —N/8. From (5.4) it follows that

(~Kx) - ea(X) = 24— 8. (53

We have
1= (O (~Kx)) =3+ 5 (~Kx) - 3 (3.4)
Using (—Kx)3 > % we obtain N > 9. Since by (5.4) we have N < 15, the claim
follows. O

Proposition 8.5. If N =9 then G is of product type.

Proof. By Lemmas 7.3-7.7 we see that H = Z/6 x (Z/3)2. Moreover, the 9 singular points
of S that correspond to the 9 singular points on X of type %(1, 1,1) form one G-orbit of
length 9. Let f: S’ — S be a H-equivariant minimal resolution of S. By Corollary 4.7,
the surface S has singularities of type A; or As. In both cases there is an f-exceptional
G-invariant curve of self-intersection —18 on S’. The index u of the class group C1(S) in
NS(S) is equals either 2 or 3. By Proposition 4.10, we have

uNS(S)H < f*(NS(S)H) @V < NS(S)H. (8.6)
Assume that = 2. By Proposition 4.4 we have

<2NS(S’)H, (102 102>> c <f*(NS<S)H>@V, (g _018>> c (NS(S')H’ (g 2))

Note that a = 6a’, since the values of the intersection form on NS(S’) is divisible by 6.
By (4.12) we have that —108a’ divides —144 for o’ > 1 which is a contradiction.
Assume that y = 3. Analogously to the previous case, we have

, 0 27 \ a 0 ne (03
(s (& 27)) e (rosomen ;) e (s (5 2)).

Then —18a divides —272, which is a contradiction. This shows that G is of product
type. U

Proposition 8.7. Let X be a GQ-Fano threefold such that all non-Gorenstein singular
points of X have type %(17 1,1). Assume that S € | — Kx| is a G-invariant K3 surface
with at worst du Val singularities. Assume that

(1) H=2Z/4x (Z/2) where H is as in (7.2),

(2) there exists a G-orbit of points of type %(1, 1,1) of cardinality 4.
Then G is of product type.

Proof. One checks that either the exact sequence (7.2) splits, or G is of product type.
Hence we may assume that G = H x Z/m. It follows that if G5 is of product type then G
is of product type as well since t(G,) < 1 for p # 2. Hence we may assume that G = G
is a 2-group.

By Corollary 5.16 and using its notation, we may assume that = € S is smooth.
Hence, in the notation of diagram (5.13), we see that t(H,) < 2 and so v(H,) < 2. Let
¥ ={x = x1,x9, 23,24} be the G-orbit of = (or, equivalently, its H-orbit). Consider the
following exact sequence

0—H,—~ H— Hy —0, (8.8)

where Hy is the image of H in the group of permutations of ¥. Since the action of H
on Y is transitive, we have that either Hy, = Z/4, or Hx, = (Z/2)?. The first possibility
Hy. = Z/4, H, = (Z/2)? is not realized as t(H,) < 2. Hence we have Hy, = (Z/2)?, and
either H, = Z/4 x Z/2, or H, = (Z/2)3. Similarly, the second subcase is not realized
since t(H,) < 2. We obtain Hy = (Z/2)?, H, = Z/4 x Z/2. In particular, the exact
sequence (8.8) splits: H = H, x Hx.
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There exists the following diagram:

EcCBl,C? — > BLLSOE

| l (8.9)

0eC? —— S>>z

where BlyC? is the blow up of C? at the closed point 0, Bl,S is the blow up of S at the
closed point x, and horizontal arrows are quotient maps by the action of Z/2. Hence, H,
faithfully acts on BlyC?, and H,, faithfully acts on Bl,S. There are exact sequences:

0—-Hy — H, — Hp — 0, (8.10)
O—>I§N—>flw—>flg—>07 (8.11)
where
(1) Hg faithfully acts on the (—2)-curve E on Bl,S,

)
(2) Hz faithfully acts on the (—1)-curve E on BlyC?,
(3) Hy faithfully acts in the normal bundle to E' on BL,S,

(4) Hy faithfully acts in the normal bundle to E on Bl,C2.
Since E is the ramification curve of the quotient map BloC? — B9, we have Hg = H L
and Hy/(Z/2) = Hy. From diagram (5.13) we obtain an exact sequence:

O%Z/Q%ﬁm%Hm%O.

We claim that I}x is abelian. Indeed, by Proposition 5.14 we see that éw is abelian
(recall that we assumed that G is a 2-group). Since t(H,) = 2, H, is abelian and
H, = Z/4 x Z/2, we have that either H, = Z/8 x Z/2, or H, = (Z/4)2.

We show that if the first possibility is realized then G is of product type. Let H, =
Z/8 x Z/2. Then G, = Z/8 x Z/2 x Z/n for some n > 1, according to Remark 5.17.
However, in this case t(G,) < 2, and hence G is of product type.

Thus, we have H, = (Z/4)2. Then fIE = Hp = Z/4 whose generator acts on C?

V-1 0
/=

). We have Hy = Z/2. Hence, the exact sequence (8.10) splits. As shown

via the matrix

J=T 0
0 =1

above, the exact sequence (8.8) splits as well. Thus, we have

H=H,xHs=Hyx Hgx Hy =2/2xZ/4x (Z/2)2.

> , I;fN = Z/4, whose generator acts on C? via the matrix

From the local description it follows that H ~ preserves the standard form dz A dy. It
follows that Hpy acts symplectically on S. Hence, there exists a symplectic element of
order 4 in H = Z/4 x (Z/2)3. However, this contradicts Theorem 3.3. O

Proof of Theorem 8.1. We work in the setting of Section 7. In particular, we assume that
H is one of the groups (1)—(6) as in Proposition 4.4. By Corollary 7.8, we see that in the
cases N = 11,13 the group G is of product type. In the cases N = 10, 14,15 by Lemmas
7.3-7.7 we see that the group G is of product type as well. It remains to deal with the
cases N = 9,12. The first case is done by Proposition 8.5, and the second one by Lemmas
7.3-7.7 and Proposition 8.7. O

9. CASE h°(—Kx) =1 WITH CYCLIC QUOTIENT SINGULARITIES

In this section, we assume that X the non-Gorenstein locus of X consists of cyclic
quotient singularities. We assume that it is not only composed of singularities of type
%(1, 1,1), since it has already been treated in Section 8. We prove the following
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Theorem 9.1. Let X be a GQ-Fano threefold where G is a finite abelian group. Assume
that h°(—=Kx) = 1. Also, assume that the non-Gorenstein locus of X consists only of
cyclic quotient singularities. Then G is of product type.

The next result is obtained from the table in Proposition 7.11, using the assumption
that all the non-Gorenstein points on X are cyclic quotient singularities.

Proposition 9.2. Assume that h°(—Kx) = 1. Assume that all non-Gorenstein points of
X are cyclic quotient singularities. If G is not of product type, then either the basket of
X consists of points of type %(17 1,1), or its basket is among the following possibilities.

Singularities Possibilities for H Argument
2 x 1710(377’ 1) Z/8XZ/AxZ]2 Lemma 9.9
3x 1(3,4,1) Z/6 x (Z/3)? Lemma 9.3
2x 4(4,7,1) Z/8xZ/AxZ)2 Lemma 9.9
6 x 3(1,3,1) Z/6 x (Z/3)? Lemma 9.3
2% $(2,7,1) Z/8xZ[AxZ)2 Lemma 9.9
4% 3(1,1,1), 4 x £(1,2,1) Z/4 % (Z/2)3 Lemma 9.12
4% £(2,3,1) Z/8x Z/4x Z/2, Lemma 9.9,
Z/4x(Z/2)3 Lemma 9.12
4x2(1,1,1),4 x 1(1,3,1) Z/4x(Z2/2)3 Lemma 9.12
2x #(3,8,1) Z/8xZ/4AxZ/2 Lemma 9.9
8 X %(17 2,1) (Z2/2)°, Lemma 9.4,
Z/8xZ/4xZ/2, Lemma 9.9,
Z/4x(Z/2)3 Lemma 9.12
3 X %(27 5,1) Z/6 x (Z/3)2 Lemma 9.3
2x #(2,9,1) Z/8xZ/4xZ/)2 Lemma 9.9
8x 2(1,1,1), 4 x £(1,2,1) Z/4 % (Z)2)3 Lemma 9.12

Table 10. Possible baskets of cyclic quotient singularities

Lemma 9.3. If H is isomorphic to Z/6 x (Z/3)?, then G is of product type.

Proof. Proposition 9.2 leaves us with the following possibilities for the basket of X:

(1) 3 x %(3,4, 1),
(2) 6 x i(l,?), 1),
(3) 3x 1(2,5,1).

By Corollary 5.16 either G is of product type, or S has singularities (corresponding to
non-Gorenstein points on X) of type Ag, A3z and Ag, respectively, in each of the three
cases. However, it contradicts Corollary 4.7. This contradiction shows that G is of product
type. U

Lemma 9.4. If H = (Z/2)°, then G is of product type.

Proof. By Proposition 9.2, either G is of product type, or the basket of singularities of

X is 8 x %(17 2,1). By Lemma 7.6, the 8 non-Gorenstein singular points of X belong to

one G-orbit, and hence to one H-orbit as well. By Corollary 5.16, we may assume that

on S these singular points have type As. Let x be such a point. By (5.7), there exists
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the following diagram:
(ZeX)~(0eC®) 5 X3z
T ] (9.5)

~ |
(7eS)~(0eC?) — S>x

There is an induced diagram, cf. (5.13):

0 —— Z/3 Ga G 0
L
0 ——2Z/3 H, H, 0

Now let ¥ = {x = x1,...,23} be a G-orbit (or, equivalently, an H-orbit) of z. Consider
the following exact sequence

0— H, - H— Hy — 0, (9.7

where Hy is the image of H in the group of permutations of 3. Since the action of H
on ¥ is transitive, we have Hy = (Z/2)3. We obtain H, = (Z/2)?. In particular, (9.7)
splits: H = H, x Hy.

By Corollary 3.9, we have H = H, x H,,, where H, = (Z/2)* is a subgroup that acts
on the minimal resolution S’ of S symplectically, and H,s; = Z/2. Let « be a non-trivial
element in the kernel of the induced map (Z/2)? = H, — H — H,s = Z/2. Then a € H,
acts symplectically on S’. In other words, « is a Nikulin involution. We know that it has
exactly 8 fixed points, see Remark 3.5. We claim that « interchanges two (—2)-curves
over each point z; in the minimal resolution of S. Indeed, otherwise o would have more
than 8 fixed points, which is a contradiction.

Consider the following diagram:

E'.E., E, C BlyC? —¥3 BI,S > E, E}, E}

l l 9.8)

E C Bl,C? Bl,S O E, E»
0ecC? 3:1 S>>z

where horizontal arrows are quotient maps by the action of Z/3, and

(1) BIL,S is the blow up of S at the closed point 2 with the exceptional (—2)-curves
E1 and EQ,

(2) BloC? is the blow up of C? at the closed point 0 with the exceptional (—1)-curve
E._

(3) BlypC? is the blow up of two Z/3-fixed points on E, E; and B, are (—1)-curves,
and E' is a smooth rational (—3)-curve,

(4) ﬁi:g is the blow up of the intersection point of E; with Fs, so E’ is a (—1)-curve,
E{ and FE) are smooth rational (—3)-curves.

-1 0
Since « is symplectic, it lifts to an element that acts on C? via the matrix < 0 1).

However, in this case the lift of o to BlyC2 does not interchange Evl and E;, hence it does
not interchange F; with E5. This contradiction shows that G is of product type. (]

Lemma 9.9. If H is isomorphic to Z/8 x Z/4 x Z/2, then G is of product type.
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Proof. Proposition 9.2 leaves us with the following possibilities for the basket of X:
(1) 2x 15(3,7,1),

(2) 2% £(4,7,1),
(3) 2x £(2,7,1),
(4) 4% £(2,3,1),
(5) 2x $7(3,8,1),
(6) 8 x 3(1,2,1),
(7) 2x £5(2,9,1).

By Corollary 5.16, we may assume that S has k singular points of type A,,_; that
correspond to k quotient singularities of index r; in the list above. By Corollary 4.7 we
see that r; could be equal only to 2 or 3. This leaves us with the only one case 8 x %(17 2,1).
Thus S has 8 singular points of type As. N

By Proposition 5.14 we know that since r = 3, the lifting G, is abelian. Hence, the
lifting Ig'z is abelian as well. Thus ﬁm does not interchange the two (—2)-curves E; and
E, as in diagram (9.8). However, this contradicts Corollary 4.7 as there are at least two
H-orbits of (—2)-curves on the minimal resolution of S. O

Proposition 9.10. Let X be a GQ-Fano threefold such that the set of non-Gorenstein
singular points of X is equal to 8 X %(1, 2,1). Assume that S € | — Kx| is a G-invariant
K3 surface with at worst du Val singularities. Assume that

(1) H=2Z/4 % (Z/2) where H is as in (7.2),

(2) the group G acts on the points 8 x +(1,2,1) transitively.
Then G is of product type.

Proof. Let us denote the singularities 8 x %(1,27 1)on X by ¥ = {& = x1,...,28}. By
assumption, they form one G-orbit (or, equivalently, the H-orbit). By Corollary 5.16, we
may assume that they correspond to 8 singular points on S of type As. There exists an
exact sequence

0—+H, - H— Hy -0, (9.11)

where Hy is the image of H in the group of permutations of 3, and H, is the stabilizer
of z. By Proposition 5.14 we know that since = 3, the lifting G, is abelian, cf. diagram
(5.13). Hence, the lifting H, is abelian as well. Thus H, does not interchange two
(—2)-curves over z € S in the minimal resolution S’ of S, cf. diagram (9.8).

For 1 < i < 8, let E;, E] be the (—2)-curves on the minimal resolution S’ that lie
over the point x; on S. In particular, we have E; - E. = 1, E; - E; = 0 for i # j. Note
that H, cannot contain a Nikulin involution. Indeed, H, stabilizes the curves E;, E! for
1 <4 < 8, and hence such an involution would have more than 8 fixed points, which is a
contradiction according to Remark 3.5. By Corollary 3.9, we have H = H; X Z/m where
H, = (Z/2)3 acts symplectically on the minimal resolution S’ of S, and m = 4. It follows
that H = H, x Hx, where Hy, = (Z/2)3 and H, = Z/4. In particular, (9.11) splits.

Let o be a generator of H,, = Z/4. Note that o preserves the curves E;, E/ for 1 < i < 8.
Observe that o2 is a non-symplectic involution on S’. It follows that the lifting of o2 acts
0
1

that o2 has the (—2)-curves Ej,..., Fg as fixed curves and the (—2)-curves Ej, ..., E}
are preserved by o2.

Since o2 preserves E! for 1 < i < 8 and does not fix it pointwisely, it follows that
H, = (o) acts on E! faithfully. Also, o2 has two fixed points on each E!: one is the point
of intersection E; N E, and we denote the other by p; € E!. Consider the local action of

—1
on C? as in diagram (9.8) via the matrix ( 0 ) Up to renumbering, we may assume

2 is non-symplectic, it is given by the matrix <_0

o2 near p;. Since o2

(1)> where the first
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eigenvector corresponds to E!, and the second eigenvector corresponds to a o?-fixed curve
C' with the property C' - E! =1 for 1 <i < 8. By a similar computation one checks that
C-E;=0for1<i<8. Note that o preserves C. We use the results | , Theorem
1.4] on fixed loci of non-symplectic automorphisms of order 4, see [ , Table 6].

Assume that o fixes C pointwisely. Then C admits a faithful action of H/H, = (Z/2)3.
Denote by N the number of o2-fixed irreducible curves. Then N > 9 as the curves
Ei,...,Eg, and the irreducible components of C' are o2-fixed. Observe that N < 10 by
[ , Table 6].

Assume that C' is reducible. Since N < 10, it follows that N = 10 and C = C; +C5. In
this case Cy and Cy are rational, and they are interchanged by H. Then S’ has ID 0.4.0.3
as in | , Table 6]. However, in this case there should be two more o-fixed rational
curves, say C} and C4. Note that C/ are also o-fixed, hence they coincide with some of
the curves E;. Since H acts on the set {Ey,..., Eg} transitively, this cannot happen.

Assume that C is irreducible. Since C' admits a faithful action of (Z/2)3, it follows
that C is non-rational. However, this case is not realized by | , Table 6].

Now assume that o does not fix C' pointwisely. Hence C admits a faithful action
of (Z/2)*. Assume that C is irreducible. Since (Z/2)* acts on C faithfully, it follows
that g(C') > 3. However, this contradicts | , Table 6]. Finally, assume that C' is
reducible, so that C = C; + Cy. If Oy and Cs are not permuted by (Z/2)*, then this
group faithfully acts on a smooth rational curve, which cannot happen. Then C; and
Cy are permuted by (Z/2)*. Hence (Z/2)? acts on each component faithfully. Again, we
arrive at a contradiction, because such a group cannot faithfully act on a smooth rational
curve. ([

Lemma 9.12. If H is isomorphic to Z/4 x (Z/2)3, then G is of product type.

Proof. Proposition 9.2 leaves us with the following possibilities for the basket of X:
(1) 4x 3(1,1,1),4 x £(1,2,1),
(2) 4x 1(2,3,1
(3) 4x 5(1,1,1
(4) 8 x £(1,2,1),
(5) 8 x 3(1,1,1),4 x £(1,2,1).

Using Proposition 8.7, we exclude the cases (1) and (3) which leaves us with the
cases (2), (4) and (5). Consider the case 8 x 3(1,1,1),4 x 1(1,2,1). Consider the orbit
4 x %(17 2,1). The stabilizer of a point x from this orbit H, should contain a Nikulin
involution acting on the minimal resolution S’ of S. By Proposition 5.14 the lifting H, is
abelian. It follows that two (—2)-curves over z on the minimal resolution S’ of S are not
interchanged. Hence such a Nikulin involution would stabilize 8 smooth rational curves,
so it has more than 8 fixed points, which is a contradiction, c¢f. Remark 3.5. In the case
4 x %(2,3, 1), the same argument applies. Finally, the case 8 x %(1,2, 1) follows from
Proposition 9.10. (]

N|—=a

)
)s
)4 x 1(1,3,1),
)

Proof of Theorem 9.1. Follows from Proposition 9.2, Lemma 9.3, Lemma 9.4, Lemma 9.9,
Proposition 9.10 and Lemma 9.12. [l

10. CasE h%(—Kx) = 1 WITH TERMINAL SINGULARITIES
In this section, we prove the following.

Theorem 10.1. Let X be a GQ-Fano threefold where G is a finite abelian group. Assume
that h%(—=Kx) = 1. Then G is of product type.

We start with the following special case.

Proposition 10.2. Assume that all the non-Gorenstein points on X have index 2. Then
G is of product type.
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Proof. We work in the setting of Section 7. In particular, we assume that H is one of the
groups (1)—(6) as in Proposition 4.4. Lemma 7.3 excludes two of these groups, leaving us
with only 4 possibilities.

The case when all the non-Gorenstein points singularities are cyclic quotient singular-
ities of index 2 is already considered in Theorem 8.1. Hence we may assume that at least
one point, say P; € X, is not a cyclic quotient singularity. By Section 5.1, in the basket
of Py there are at least 2 cyclic quotient singularities.

By Lemma 7.6 and Lemma 7.7 we see that the groups H = (Z/2)° and H = Z/4 x
(Z/2)3 are not realized, since in this case ¢ is divisible by 4. Hence the total number N
of half-points in the baskets of k1 x P; is divisible by 8. However, by Proposition 8.2 we
know that 9 < N < 15. This is a contradiction.

Consider the case H = Z/6 x (Z/3)?. By Lemma 7.5 we have that ki is divisible by 3.
Hence the total number N of half-points in the baskets of k; x P; is divisible by 6. By
Proposition 8.2 we know that 9 < N < 15. Thus N = 12 and so k; = 6. By Lemma 7.5
we see that X has no other non-Gorenstein singular points. Also, by Corollary 4.7, the
surface S has only singular points of type A; or A;. However, this contradicts Proposition
5.18.

Consider the case H = Z/8 x Z/4 x Z/2. By Lemma 7.4 we have that k; is divisible
by 2. Hence the total number N of half-points in the baskets of k1 x P; is divisible by 4.
However, by Proposition 8.2 we know that 9 < N < 15. Thus N = 12, and so k; = 6.
However, in this case G has at least two orbits of singular points, which contradicts
Lemma 7.4. (]

Using Proposition 10.2, Proposition 7.11 and Corollary 7.8, we obtain the following
list of remaining possibilities.

Singularities of X Basket of X Possibilities for H
2 x cA/4 or 6x +(1,3,1) Z/8xZ[AxZ)2,
3x cA/4 Z/6 x (2/3)?

2 x cA/4 4x1(2,3,1) Z/8xZ/AxZ)2
4 x cA/3 or 8 x £(1,2,1) Z/8xZ/4AxZ/)2,
4xeD/3 Z/4x(Z)2)3

2 x cAz/4 8x 1(1,1,1), 2 x £(1,3,1) Z/8xZ/4xZ)2
2 x cAz/4 10 x £(1,1,1), 2 x 1(1,3,1) Z/8xZ/4AxZ)2
4xcA/2,4% 5(1,2,1) 8 x £(1,1,1), 4 x £(1,2,1) Z/4 % (Z)2)3

2 x cAz/4 6x1(1,1,1),2 x +(1,3,1) Z/8xZ/4AxZ)2
4 x cAx/4 4x 2(1,1,1),4 x £(1,3,1) Z/8xZ/4xZ)2
3 x cAz/4 6x1(1,1,1),3 x +(1,3,1) Z/6 x (Z/3)?

Table 11. Possible baskets of singularities on X

Proof of Theorem 10.1. Proposition 5.18 together with Corollary 4.7 exclude all cases
except the following:

(1) 4 x cA/3, H=2Z/4 x (Z/2)3,

(2) 4xcD/3, H=2/4x (Z/2)3,

(3) 4x cA/2+4x $(1,2,1), H=2/4x (Z/2)>.

In the case (3), by Corollary 5.16 and Proposition 5.18 we may assume that we have
4 A, singularities on S that correspond to 4 X %(1, 1,1), and 4 du Val singularities of type
different from A; or A;. Denote by f: S’ — S the minimal resolution of S. It follows
that there are at least 20 f-exceptional (—2)-curves. However, this contradicts the fact
that on a smooth K3 surface S’ one has p(S’) < 20. Hence this case is not realized.
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Consider the cases (1) (or (2)), that is, when X has singularities 4 x cA/3 (or 4x¢D/3),
and H = Z/4 x (Z/2)3. By Proposition 5.18 and Remark 5.6, we see that S has 4
singularities of type Ay where k > 5. However, arguing as in the previous case we get
a contradiction with p(S’) < 20. Hence this case is not realized either. The proof is
completed. [l

11. PROOF OF MAIN RESULTS

Proof of Theorem 1.5. Assume that G is a group that faithfully acts on a rational con-
nected threefold X. By a standard argument, we may assume that X is a projective
GQ-Mori fiber space over the base Z. If dim Z > 0 then G is of product type by | ,
Corollary 3.17]. Hence we may assume that X is a GQ-Fano threefold.

If h%(—Kx) = 0 and for any GQ-Fano threefold X’ which is G-birational to X we have
h%(—Kx/) = 0, then G is of type (3) as in Theorem 1.5. Hence we may assume that
h%(—=Kx) > 0. Also, by the proof of | , Theorem 1.7] we may assume that for any
G-invariant element S € | — K x|, the pair (X, S) is plt, so S is a K3 surface with at worst
du Val singularities. If h%(—Kx) > 2 then by Theorem 6.5 we have that G is of product
type.

So we may assume that h(—Kx) = 1. In particular, this implies that the set of
non-Gorenstein singularities of X is non-empty. If the set of non-Gorenstein singularities
consists of points of type %(17 1,1), then by Theorem 8.1 we have that G is of product type.
If the set of non-Gorenstein singularities consists of cyclic quotient singularities, then by
Theorem 9.1 we have that G is of product type. Finally, if the set of non-Gorenstein singu-
larities consists of terminal points which are non necessarily cyclic quotient singularities,
then by Theorem 10.1 we have that G is of product type. O

Proof of Proposition 1.7. Follows from Theorem 3.7 and Remark 3.8. (]
12. APPENDIX: INTERSECTION MATRICES FOR K3 SURFACES ACTED ON BY (Z/2)°
AND Z/4 x (Z2/2)3

Proposition 12.1. Let S be a K3 surface with a faithful action of H = Z/4 x (Z/2)3.
Then the intersection matriz M on PicH(S) is one of the following.

(1)
0 4
4 0}’
0 2
2 0/’

(2)

(3)

(4)

N OO O
o
|
W~

o O O W



(5)

00 0 0 0 2
0 -4 -2 2 2 0
0 -2 -4 2 2 0
0 2 2 —4 0 o}
0 2 2 0 -4 0
2 0 0 0 0 O
(6)
0 -2 -2 2 -2 0
-2 -4 -2 0 -2 -2
-2 =2 =40 0 0
2 0 0 0 0 o0}
-2 -2 0 0 -4 0
0 -2 0 0 0 -4
(7)
00 0 2 0 0
0 -4 -2 0 -2 =2
0 -2 -4 0 0 0
2 0 0 0 0 o]
0 -2 0 0 —4 0
0 -2 0 0 0 —4
(8)
00 2 0 0 0
0 -4 0 -2 —6 2
2 0 0 0 0 0
0 2 0 -4 -6 2|
0 -6 0 —6 —20 8
0o 2 0 2 8 -4
(9)
0 -2 2 —4 -4 2
-2 -4 0 -4 -6 2
2 0 0 0 0 0
-4 -4 0 -8 -8 4|’
-4 —6 0 -8 —12 4
2 2 0 4 4 —4
(10)

0o -8 -2 -20 —-14 -26

-4 =20 -8 —-60 —-40 78
-2 —-14 -4 —-40 -28 —52
-6 —26 —-12 —-78 =52 —-104
Proposition 12.2. Let S be a K3 surface with a faithful action of H = (Z/2)%. Then

the intersection matriz M on Pic S) is one of the following.
g
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(1)

(5).

(2)

20

(3)

(4)

(5)

(6)

(7)

-4 -2 -2 0
-2 -4 -2 0

0
0

(8)

—4

-2

-2

(9)

-2
—12

—4

—2

-4 0

-6 0

(10)

-10 -20 —-38 -28

—52

—10

—20
—16

—14
—28
—20

-8
—14
—10

—4
—6
—4

—20
-38
—28
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(11)

(12)

(13)

(14)

[Beau07]
[B107]
[BH23]
[BK22]
[ChP16]
[DI09]
[EL25)
[Fu00]
[GRDB]

[Hul6]
[I-F00]

[JL25]
[KMO8]

[KZh24]

-4 0 -2 -4 0
0 0 0 0 2
-2 0 -4 0 Of,
-4 0 0 -8 0
0 2 0 0 O
0 0 2 0 0
0 -4 0 -4 -2
2 0 0 0 01,
0 -4 0 —-12 —6
0 -2 0 -6 —4
0 2 2 =2 0
2 4 4 -2 =2
2 4 0 O 01,
-2 -2 0 -4 0
0o -2 0 0 -4
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