Planes of the Burkhardt quartic
Planes of the Burkhardt quartic
This page displays equations of the 40 planes in the Burkhardt quartic X4 defined in P4 by
y[1]^4-y[1]*(y[2]^3+y[3]^3+y[4]^3+y[5]^3)+3*y[2]*y[3]*y[4]*y[5].
Here is the source code.
The 1-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (-2*zeta_3 - 1)*y[5],
(zeta_3 + 2)*y[1] + (2*zeta_3 + 1)*y[5]
------------------------
The 2-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (-2*zeta_3 - 1)*y[2],
(zeta_3 + 2)*y[1] + (2*zeta_3 + 1)*y[2]
------------------------
The 3-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (-2*zeta_3 - 1)*y[5],
zeta_3*y[1] + (zeta_3 + 1)*y[2] - y[3] - y[4] + (zeta_3 + 1)*y[5]
------------------------
The 4-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] - y[3] - y[4] - zeta_3*y[5],
(zeta_3 + 2)*y[1] + (2*zeta_3 + 1)*y[2]
------------------------
The 5-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (-2*zeta_3 - 1)*y[5],
zeta_3*y[1] + (zeta_3 + 1)*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] + (zeta_3 +
1)*y[5]
------------------------
The 6-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] -
zeta_3*y[5],
(zeta_3 + 2)*y[1] + (2*zeta_3 + 1)*y[2]
------------------------
The 7-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (-2*zeta_3 - 1)*y[5],
zeta_3*y[1] + (zeta_3 + 1)*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] + (zeta_3 +
1)*y[5]
------------------------
The 8-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] -
zeta_3*y[5],
(zeta_3 + 2)*y[1] + (2*zeta_3 + 1)*y[2]
------------------------
The 9-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (-2*zeta_3 - 1)*y[2],
zeta_3*y[1] + (zeta_3 + 1)*y[2] - y[3] - y[4] + (zeta_3 + 1)*y[5]
------------------------
The 10-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] - y[3] - y[4] - zeta_3*y[5],
(zeta_3 + 2)*y[1] + (2*zeta_3 + 1)*y[5]
------------------------
The 11-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (-2*zeta_3 - 1)*y[2],
zeta_3*y[1] + (zeta_3 + 1)*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] + (zeta_3 +
1)*y[5]
------------------------
The 12-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] -
zeta_3*y[5],
(zeta_3 + 2)*y[1] + (2*zeta_3 + 1)*y[5]
------------------------
The 13-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (-2*zeta_3 - 1)*y[2],
zeta_3*y[1] + (zeta_3 + 1)*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] + (zeta_3 +
1)*y[5]
------------------------
The 14-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] -
zeta_3*y[5],
(zeta_3 + 2)*y[1] + (2*zeta_3 + 1)*y[5]
------------------------
The 15-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] - y[3] - y[4] - zeta_3*y[5],
zeta_3*y[1] + (zeta_3 + 1)*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] + (zeta_3 +
1)*y[5]
------------------------
The 16-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] -
zeta_3*y[5],
zeta_3*y[1] + (zeta_3 + 1)*y[2] - y[3] - y[4] + (zeta_3 + 1)*y[5]
------------------------
The 17-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] - y[3] - y[4] - zeta_3*y[5],
zeta_3*y[1] + (zeta_3 + 1)*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] + (zeta_3 +
1)*y[5]
------------------------
The 18-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] -
zeta_3*y[5],
zeta_3*y[1] + (zeta_3 + 1)*y[2] - y[3] - y[4] + (zeta_3 + 1)*y[5]
------------------------
The 19-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] -
zeta_3*y[5],
zeta_3*y[1] + (zeta_3 + 1)*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] + (zeta_3 +
1)*y[5]
------------------------
The 20-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - zeta_3*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] -
zeta_3*y[5],
zeta_3*y[1] + (zeta_3 + 1)*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] + (zeta_3 +
1)*y[5]
------------------------
The 21-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (zeta_3 - 1)*y[5],
zeta_3*y[1] - y[2] - y[3] - y[4] - zeta_3*y[5]
------------------------
The 22-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] + (zeta_3 + 1)*y[2] - y[3] - y[4] - y[5],
(zeta_3 + 2)*y[1] + (-zeta_3 - 2)*y[2]
------------------------
The 23-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (zeta_3 - 1)*y[5],
zeta_3*y[1] - y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] - zeta_3*y[5]
------------------------
The 24-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] + (zeta_3 + 1)*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] - y[5],
(zeta_3 + 2)*y[1] + (-zeta_3 - 2)*y[2]
------------------------
The 25-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 + 1)*y[1] + (zeta_3 - 1)*y[5],
zeta_3*y[1] - y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] - zeta_3*y[5]
------------------------
The 26-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] + (zeta_3 + 1)*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] - y[5],
(zeta_3 + 2)*y[1] + (-zeta_3 - 2)*y[2]
------------------------
The 27-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] + (zeta_3 + 1)*y[2] - y[3] - y[4] - y[5],
zeta_3*y[1] - y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] - zeta_3*y[5]
------------------------
The 28-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] + (zeta_3 + 1)*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] - y[5],
zeta_3*y[1] - y[2] - y[3] - y[4] - zeta_3*y[5]
------------------------
The 29-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] + (zeta_3 + 1)*y[2] - y[3] - y[4] - y[5],
zeta_3*y[1] - y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] - zeta_3*y[5]
------------------------
The 30-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] + (zeta_3 + 1)*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] - y[5],
zeta_3*y[1] - y[2] - y[3] - y[4] - zeta_3*y[5]
------------------------
The 31-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] + (zeta_3 + 1)*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] - y[5],
zeta_3*y[1] - y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] - zeta_3*y[5]
------------------------
The 32-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] + (zeta_3 + 1)*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] - y[5],
zeta_3*y[1] - y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] - zeta_3*y[5]
------------------------
The 33-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - y[2] - y[3] - y[4] + (zeta_3 + 1)*y[5],
zeta_3*y[1] - zeta_3*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] - y[5]
------------------------
The 34-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] + (zeta_3 + 1)*y[5],
zeta_3*y[1] - zeta_3*y[2] - y[3] - y[4] - y[5]
------------------------
The 35-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - y[2] - y[3] - y[4] + (zeta_3 + 1)*y[5],
zeta_3*y[1] - zeta_3*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] - y[5]
------------------------
The 36-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] + (zeta_3 + 1)*y[5],
zeta_3*y[1] - zeta_3*y[2] - y[3] - y[4] - y[5]
------------------------
The 37-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] + (zeta_3 + 1)*y[5],
zeta_3*y[1] - zeta_3*y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] - y[5]
------------------------
The 38-th plane in X4 is given by:
Scheme over K defined by
(-zeta_3 - 1)*y[1] - y[2] + (zeta_3 + 1)*y[3] - zeta_3*y[4] + (zeta_3 + 1)*y[5],
zeta_3*y[1] - zeta_3*y[2] - zeta_3*y[3] + (zeta_3 + 1)*y[4] - y[5]
------------------------
The 39-th plane in X4 is given by:
Scheme over K defined by
(zeta_3 - 1)*y[1] + (2*zeta_3 + 1)*y[4],
(-zeta_3 - 2)*y[1] + (-2*zeta_3 - 1)*y[4]
------------------------
The 40-th plane in X4 is given by:
Scheme over K defined by
(zeta_3 - 1)*y[1] + (2*zeta_3 + 1)*y[3],
(-zeta_3 - 2)*y[1] + (-2*zeta_3 - 1)*y[3]
------------------------