X4Automorphism

Subgroups of the automorphism group of X4


The page displays a subgroup lattice of PSp4(F3), and generators of every subgroup of the automorphism group of the Burkhardt quardtic defined in P4 by
    y[1]^4-y[1]*(y[2]^3+y[3]^3+y[4]^3+y[5]^3)+3*y[2]*y[3]*y[4]*y[5],
In particular, if the class of the subgroup then it is not linearizable. There are 103 such nonlinearizable classes. The indices of these groups corresponding to the subgroup lattice below are
[ 2, 6, 8, 9, 10, 11, 14, 15, 16, 17, 19, 21, 22, 23, 26, 27, 28, 29, 30, 31, 
32, 33, 34, 35, 36, 37, 38, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 
74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 
94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 
111, 112, 113, 114, 115, 116 ].
There are 12 classes left. Their indices are
[ 3, 4, 5, 7, 12, 13, 18, 20, 24, 25, 39, 41], 
8 classes among the 13 are linearizable, their indices are
[ 3, 4, 5, 7, 12, 13, 20, 24].
The source code of matrices of generators of all groups can be found here.



Partially ordered set of subgroup classes of PSp4(F3)
-----------------------------------------

[116]  Order 25920  Length 1     Maximal Subgroups: 111 112 113 114 115
---
[115]  Order 960    Length 27    Maximal Subgroups: 77 102 103 109
[114]  Order 576    Length 45    Maximal Subgroups: 73 108 109 110
---
[113]  Order 720    Length 36    Maximal Subgroups: 86 87 88 95 96 107
[112]  Order 648    Length 40    Maximal Subgroups: 68 97 105 106
[111]  Order 648    Length 40    Maximal Subgroups: 89 97 104
[110]  Order 288    Length 45    Maximal Subgroups: 89 99 100 101
[109]  Order 192    Length 135   Maximal Subgroups: 84 98 99
[108]  Order 192    Length 45    Maximal Subgroups: 87 98 100
---
[107]  Order 360    Length 36    Maximal Subgroups: 64 67 72 77 78
[106]  Order 324    Length 40    Maximal Subgroups: 36 79 91
[105]  Order 216    Length 120   Maximal Subgroups: 69 88 91 93 94
[104]  Order 216    Length 40    Maximal Subgroups: 63 92
[103]  Order 160    Length 162   Maximal Subgroups: 25 82 90
[102]  Order 96     Length 270   Maximal Subgroups: 69 82 83 84 86
[101]  Order 96     Length 90    Maximal Subgroups: 63 80 85
[100]  Order 96     Length 45    Maximal Subgroups: 62 66 80
[ 99]  Order 96     Length 45    Maximal Subgroups: 61 65 80
[ 98]  Order 64     Length 135   Maximal Subgroups: 80 81 82
---
[ 97]  Order 162    Length 160   Maximal Subgroups: 74 76 79
[ 96]  Order 120    Length 216   Maximal Subgroups: 41 49 67 77
[ 95]  Order 120    Length 216   Maximal Subgroups: 37 49 68 78
[ 94]  Order 108    Length 120   Maximal Subgroups: 39 72 75
[ 93]  Order 108    Length 120   Maximal Subgroups: 70 73 75 76
[ 92]  Order 108    Length 120   Maximal Subgroups: 40 74
[ 91]  Order 108    Length 40    Maximal Subgroups: 71 75
[ 90]  Order 80     Length 162   Maximal Subgroups: 7 53
[ 89]  Order 72     Length 360   Maximal Subgroups: 48 59 61 62 63
[ 88]  Order 72     Length 360   Maximal Subgroups: 34 70 71 72
[ 87]  Order 48     Length 540   Maximal Subgroups: 37 58 64 66 68
[ 86]  Order 48     Length 270   Maximal Subgroups: 41 58 60 67
[ 85]  Order 48     Length 270   Maximal Subgroups: 40 54 59
[ 84]  Order 48     Length 270   Maximal Subgroups: 38 53 60 65
[ 83]  Order 48     Length 270   Maximal Subgroups: 39 57 60
[ 82]  Order 32     Length 405   Maximal Subgroups: 53 55 56 57 58
[ 81]  Order 32     Length 405   Maximal Subgroups: 55 56
[ 80]  Order 32     Length 45    Maximal Subgroups: 54 55
---
[ 79]  Order 81     Length 160   Maximal Subgroups: 50 51 52
[ 78]  Order 60     Length 216   Maximal Subgroups: 17 25 36
[ 77]  Order 60     Length 216   Maximal Subgroups: 18 25 35
[ 76]  Order 54     Length 240   Maximal Subgroups: 43 44 45 48 50
[ 75]  Order 54     Length 120   Maximal Subgroups: 42 46 47 50
[ 74]  Order 54     Length 40    Maximal Subgroups: 45 51
[ 73]  Order 36     Length 720   Maximal Subgroups: 37 38 44 47 48
[ 72]  Order 36     Length 360   Maximal Subgroups: 13 42
[ 71]  Order 36     Length 360   Maximal Subgroups: 41 42 46
[ 70]  Order 36     Length 120   Maximal Subgroups: 37 42 43
[ 69]  Order 24     Length 1080  Maximal Subgroups: 34 38 39 41
[ 68]  Order 24     Length 540   Maximal Subgroups: 14 34 36
[ 67]  Order 24     Length 540   Maximal Subgroups: 18 33 35
[ 66]  Order 24     Length 540   Maximal Subgroups: 19 27 36
[ 65]  Order 24     Length 540   Maximal Subgroups: 16 28 35
[ 64]  Order 24     Length 540   Maximal Subgroups: 17 33 36
[ 63]  Order 24     Length 360   Maximal Subgroups: 26 40
[ 62]  Order 24     Length 360   Maximal Subgroups: 19 26
[ 61]  Order 24     Length 360   Maximal Subgroups: 16 26
[ 60]  Order 24     Length 270   Maximal Subgroups: 20 29 35
[ 59]  Order 24     Length 90    Maximal Subgroups: 15 26
[ 58]  Order 16     Length 810   Maximal Subgroups: 27 29 32 33 34
[ 57]  Order 16     Length 810   Maximal Subgroups: 29 30 32
[ 56]  Order 16     Length 405   Maximal Subgroups: 28 32
[ 55]  Order 16     Length 405   Maximal Subgroups: 27 28 30 31
[ 54]  Order 16     Length 270   Maximal Subgroups: 26 30 31
[ 53]  Order 16     Length 27    Maximal Subgroups: 28 29
---
[ 52]  Order 27     Length 320   Maximal Subgroups: 22 24
[ 51]  Order 27     Length 40    Maximal Subgroups: 22
[ 50]  Order 27     Length 40    Maximal Subgroups: 21 22 23
[ 49]  Order 20     Length 1296  Maximal Subgroups: 13 25
[ 48]  Order 18     Length 720   Maximal Subgroups: 15 16 19 23
[ 47]  Order 18     Length 720   Maximal Subgroups: 17 20 23
[ 46]  Order 18     Length 720   Maximal Subgroups: 18 20 21
[ 45]  Order 18     Length 480   Maximal Subgroups: 14 15 22
[ 44]  Order 18     Length 240   Maximal Subgroups: 14 16 23
[ 43]  Order 18     Length 240   Maximal Subgroups: 14 19 21
[ 42]  Order 18     Length 120   Maximal Subgroups: 17 18 21
[ 41]  Order 12     Length 1080  Maximal Subgroups: 12 18 20
[ 40]  Order 12     Length 1080  Maximal Subgroups: 8 15
[ 39]  Order 12     Length 1080  Maximal Subgroups: 13 20
[ 38]  Order 12     Length 1080  Maximal Subgroups: 9 16 20
[ 37]  Order 12     Length 720   Maximal Subgroups: 9 14 17 19
[ 36]  Order 12     Length 540   Maximal Subgroups: 6 12
[ 35]  Order 12     Length 270   Maximal Subgroups: 5 10
[ 34]  Order 8      Length 1620  Maximal Subgroups: 9 12 13
[ 33]  Order 8      Length 1620  Maximal Subgroups: 10 12 13
[ 32]  Order 8      Length 810   Maximal Subgroups: 11 13
[ 31]  Order 8      Length 810   Maximal Subgroups: 8 11
[ 30]  Order 8      Length 405   Maximal Subgroups: 8 11
[ 29]  Order 8      Length 270   Maximal Subgroups: 9 10 11
[ 28]  Order 8      Length 135   Maximal Subgroups: 10 11
[ 27]  Order 8      Length 135   Maximal Subgroups: 11 12
[ 26]  Order 8      Length 90    Maximal Subgroups: 8
---
[ 25]  Order 10     Length 1296  Maximal Subgroups: 3 7
[ 24]  Order 9      Length 960   Maximal Subgroups: 4
[ 23]  Order 9      Length 240   Maximal Subgroups: 4 5 6
[ 22]  Order 9      Length 160   Maximal Subgroups: 4 6
[ 21]  Order 9      Length 120   Maximal Subgroups: 5 6
[ 20]  Order 6      Length 1080  Maximal Subgroups: 3 5
[ 19]  Order 6      Length 720   Maximal Subgroups: 2 6
[ 18]  Order 6      Length 720   Maximal Subgroups: 3 5
[ 17]  Order 6      Length 720   Maximal Subgroups: 3 6
[ 16]  Order 6      Length 720   Maximal Subgroups: 2 5
[ 15]  Order 6      Length 360   Maximal Subgroups: 2 4
[ 14]  Order 6      Length 240   Maximal Subgroups: 2 6
[ 13]  Order 4      Length 1620  Maximal Subgroups: 3
[ 12]  Order 4      Length 540   Maximal Subgroups: 3
[ 11]  Order 4      Length 405   Maximal Subgroups: 2 3
[ 10]  Order 4      Length 270   Maximal Subgroups: 3
[  9]  Order 4      Length 270   Maximal Subgroups: 2 3
[  8]  Order 4      Length 270   Maximal Subgroups: 2
---
[  7]  Order 5      Length 1296  Maximal Subgroups: 1
[  6]  Order 3      Length 240   Maximal Subgroups: 1
[  5]  Order 3      Length 120   Maximal Subgroups: 1
[  4]  Order 3      Length 40    Maximal Subgroups: 1
[  3]  Order 2      Length 270   Maximal Subgroups: 1
[  2]  Order 2      Length 45    Maximal Subgroups: 1 --The involution fixing a K3 surface
---
[  1]  Order 1      Length 1     Maximal Subgroups:


Concretely, they are:

2: the group name is   C2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]
------------------------------


3: the group name is   C2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2
Generators:
    [          1           0           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0      zeta_3           0           0           0]
    [          0           0           0           0           1]
    [          0           0           0           1           0]
------------------------------


4: the group name is   C3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3
Generators:
    [     1      0      0      0      0]
    [     0      1      0      0      0]
    [     0      0 zeta_3      0      0]
    [     0      0      0 zeta_3      0]
    [     0      0      0      0 zeta_3]
------------------------------


5: the group name is   C3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3
Generators:
    [-1/3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*zeta_3 1/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3]
    [1/3*zeta_3 1/3 -2/3 1/3 1/3*zeta_3]
------------------------------


6: the group name is   C3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3
Generators:
    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           0 -zeta_3 - 1           0           0]
------------------------------


7: the group name is   C5, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 5
Generators:
    [-1/3 2/3 2/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3*zeta_3 1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3]
    [1/3*zeta_3 1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3]
    [1/3 1/3 1/3 -2/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 -2/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3]
------------------------------


8: the group name is   C4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2)]
    [1/3*(zeta_3 + 2) 0 1/3*(-2*zeta_3 - 1) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 1/3*(-zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]
------------------------------


9: the group name is C2^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2
Generators:
    [          1           0           0           0           0]
    [          0           0      zeta_3           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0 -zeta_3 - 1           0]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]
------------------------------


10: the group name is C2^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2
Generators:
    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3 -1/3*zeta_3 2/3]
    [-1/3*zeta_3 -1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3*zeta_3 -1/3]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 -2/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3]
    [1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3]
------------------------------


11: the group name is C2^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0    -zeta_3          0]
    [         0          0 zeta_3 + 1          0          0]
    [         0          0          0          0         -1]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3*zeta_3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3 1/3]
------------------------------


12: the group name is C2^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2
Generators:
    [          1           0           0           0           0]
    [          0           0      zeta_3           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0 -zeta_3 - 1           0]

    [          1           0           0           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0      zeta_3]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
------------------------------


13: the group name is   C4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2
Generators:
    [          1           0           0           0           0]
    [          0           0      zeta_3           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0 -zeta_3 - 1           0]

    [     -1       0       0       0       0]
    [      0       0       0 -zeta_3       0]
    [      0       0       0       0 -zeta_3]
    [      0       0      -1       0       0]
    [      0 -zeta_3       0       0       0]
------------------------------


14: the group name is   S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
------------------------------


15: the group name is   C6, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0 -zeta_3 - 1]
------------------------------


16: the group name is   C6, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [1/3*(-2*zeta_3 - 1) 1/3*(4*zeta_3 + 2) 0 0 0]
    [1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0 0 0]
    [0 0 1/3*(zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2)]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2)]
    [0 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 - 1) 1/3*(zeta_3 - 1)]
------------------------------


17: the group name is   S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3
Generators:
    [1/3 -2/3*zeta_3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) 2/3 -1/3 -1/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3 -1/3 2/3*zeta_3 -1/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) -1/3 -1/3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3 2/3]

    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) 2/3*zeta_3 -1/3]
    [-1/3 -1/3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3 -1/3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
------------------------------


18: the group name is   S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3
Generators:
    [-1/3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3*zeta_3 1/3 1/3 1/3 -2/3*zeta_3]
    [1/3*zeta_3 1/3 1/3 -2/3 1/3*zeta_3]
    [1/3*zeta_3 1/3 -2/3 1/3 1/3*zeta_3]
    [1/3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3]

    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3]
    [1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3]
    [1/3 1/3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
------------------------------


19: the group name is   C6, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 4) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 0 0]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]
------------------------------


20: the group name is   C6, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3
Generators:
    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3*zeta_3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3 1/3]

    [-1/3 2/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3]
------------------------------


21: the group name is C3^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3^2
Generators:
    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 4) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 0 0]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           0 -zeta_3 - 1           0           0]
------------------------------


22: the group name is C3^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3^2
Generators:
    [1/3*(-2*zeta_3 - 1) 1/3*(4*zeta_3 + 2) 0 0 0]
    [1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0 0 0]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           0 -zeta_3 - 1           0           0]
------------------------------


23: the group name is C3^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3^2
Generators:
    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0 -zeta_3 - 1]

    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 4) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 0 0]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]
------------------------------


24: the group name is   C9, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3^2
Generators:
    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 4) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 0 0]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3 -1/3*zeta_3 2/3]
    [-1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3]
    [-1/3 1/3*(zeta_3 + 1) 2/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3]
------------------------------


25: the group name is   D5, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 5
Generators:
    [1/3 -2/3 -2/3*zeta_3 -2/3*zeta_3 -2/3*zeta_3]
    [-1/3 2/3 -1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3 2/3 -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3 -1/3 -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3 -1/3 2/3]

    [1/3*(-2*zeta_3 - 1) 0 1/3*(4*zeta_3 + 2) 0 0]
    [1/3*(-zeta_3 - 2) 0 1/3*(-zeta_3 - 2) 0 0]
    [0 1/3*(-2*zeta_3 - 1) 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1)]
    [0 1/3*(zeta_3 - 1) 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [0 1/3*(-2*zeta_3 - 1) 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2)]
------------------------------


26: the group name is   Q8, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3
Generators:
    [1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2)]
    [1/3*(zeta_3 + 2) 0 1/3*(-2*zeta_3 - 1) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 1/3*(-zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]

    [1/3*(-2*zeta_3 - 1) 0 1/3*(-2*zeta_3 - 4) 0 0]
    [0 1/3*(-2*zeta_3 - 1) 0 1/3*(zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]
    [1/3*(-zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 0 0]
    [0 1/3*(zeta_3 + 2) 0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1)]
    [0 1/3*(-2*zeta_3 - 1) 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 + 2)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]
------------------------------


27: the group name is C2^3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3
Generators:
    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0      zeta_3           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0 -zeta_3 - 1           0           0           0]

    [1 0 0 0 0]
    [0 0 1 0 0]
    [0 1 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3]
------------------------------


28: the group name is C2^3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3
Generators:
    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 -1/3 -1/3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2)]
    [-1/3*zeta_3 -1/3 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3]
    [1/3*(zeta_3 + 1) 2/3*zeta_3 -1/3*zeta_3 -1/3 -1/3]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 2/3 -1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 -1/3 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 2/3*zeta_3 -1/3 -1/3]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 -1/3 2/3]

    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2) 1/3*zeta_3]
    [1/3 1/3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3]
------------------------------


29: the group name is C2^3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3
Generators:
    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0      zeta_3           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0 -zeta_3 - 1           0           0           0]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0    -zeta_3          0]
    [         0          0 zeta_3 + 1          0          0]
    [         0          0          0          0         -1]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3]
------------------------------


30: the group name is C2*C4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3
Generators:
    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 -2/3 1/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
    [1/3 1/3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3]

    [          1           0           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 -2/3*zeta_3 -2/3 -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 
        2)]
    [-1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 
        1)]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 2/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3 -1/3*zeta_3 -1/3 2/3*zeta_3 -1/3*zeta_3]
------------------------------


31: the group name is   D4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3
Generators:
    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 -2/3 1/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
    [1/3 1/3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3]

    [1/3 -2/3*zeta_3 -2/3 -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 2/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 
        1)]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 
        2)]
    [-1/3 2/3*zeta_3 -1/3 -1/3*zeta_3 -1/3*zeta_3]

    [          1           0           0           0           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0      zeta_3           0           0]
    [          0      zeta_3           0           0           0]
------------------------------


32: the group name is C2*C4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3
Generators:
    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0      zeta_3           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0 -zeta_3 - 1           0           0           0]

    [1/3 -2/3*zeta_3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) -1/3 2/3 -1/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3 -1/3 -1/3*zeta_3 2/3*zeta_3]
    [-1/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3 -1/3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3 -1/3]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3]
------------------------------


33: the group name is   D4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3
Generators:
    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0      zeta_3           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0 -zeta_3 - 1           0           0           0]

    [1/3 -2/3*zeta_3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) -1/3 2/3 -1/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3 -1/3 -1/3*zeta_3 2/3*zeta_3]
    [-1/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3 -1/3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3 -1/3]

    [1 0 0 0 0]
    [0 0 1 0 0]
    [0 1 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]
------------------------------


34: the group name is   D4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0      zeta_3]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [          1           0           0           0           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0           0           0           1           0]
    [          0           0           1           0           0]
    [          0      zeta_3           0           0           0]
------------------------------


35: the group name is   A4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3
Generators:
    [1/3*(-2*zeta_3 - 1) 0 1/3*(4*zeta_3 + 2) 0 0]
    [0 1/3*(zeta_3 - 1) 0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2)]
    [1/3*(-zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 0 0]
    [0 1/3*(-2*zeta_3 - 1) 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2)]
    [0 1/3*(zeta_3 - 1) 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 - 1)]

    [ 1/3 -2/3 -2/3 -2/3 -2/3]
    [-1/3  2/3 -1/3 -1/3 -1/3]
    [-1/3 -1/3 -1/3 -1/3  2/3]
    [-1/3 -1/3 -1/3  2/3 -1/3]
    [-1/3 -1/3  2/3 -1/3 -1/3]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3 -1/3*zeta_3 2/3]
    [-1/3*zeta_3 -1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3*zeta_3 -1/3]
------------------------------


36: the group name is   A4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3
Generators:
    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           1           0           0]
    [          0           0           0 -zeta_3 - 1           0]

    [          1           0           0           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0      zeta_3]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [          1           0           0           0           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0           0           0           1           0]
    [          0           0           1           0           0]
    [          0      zeta_3           0           0           0]
------------------------------


37: the group name is   D6, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0    -zeta_3          0]
    [         0          0 zeta_3 + 1          0          0]
    [         0          0          0          0         -1]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3]

    [1/3 -2/3 -2/3 -2/3 -2/3]
    [-1/3 2/3 -1/3 -1/3 -1/3]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3 2/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) 
        1/3*(zeta_3 + 1)]
    [-1/3 -1/3 -1/3 -1/3 2/3]
------------------------------


38: the group name is C2*C6, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]

    [     -1       0       0       0       0]
    [      0       0       0       0 -zeta_3]
    [      0       0 -zeta_3       0       0]
    [      0       0       0 -zeta_3       0]
    [      0      -1       0       0       0]

    [          1           0           0           0           0]
    [          0      zeta_3           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0      zeta_3]
------------------------------


39: the group name is C3:C4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3
Generators:
    [        -1          0          0          0          0]
    [         0          0          0          0 zeta_3 + 1]
    [         0          0          0         -1          0]
    [         0 zeta_3 + 1          0          0          0]
    [         0          0 zeta_3 + 1          0          0]

    [          1           0           0           0           0]
    [          0           0      zeta_3           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0 -zeta_3 - 1           0]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3]
    [1/3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*(-zeta_3 - 1)]
------------------------------


40: the group name is  C12, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3
Generators:
    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3 -2/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3*zeta_3 1/3*(zeta_3 + 1) -1/3]
    [-1/3*zeta_3 2/3*zeta_3 -1/3 -1/3*zeta_3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3 -1/3*zeta_3 1/3*(-2*zeta_3 - 2)]

    [1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 4) 0 0 0]
    [1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2) 0 0 0]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]
    [0 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2)]
    [0 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1) 1/3*(zeta_3 - 1)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]
------------------------------


41: the group name is   D6, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3
Generators:
    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3*zeta_3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3 1/3]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3]
    [1/3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*(-zeta_3 - 1)]
------------------------------


42: the group name is C3:S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^2
Generators:
    [1 0 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]
    [0 0 1 0 0]
    [0 1 0 0 0]

    [1/3 -2/3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3]
    [-1/3 2/3 -1/3*zeta_3 1/3*(zeta_3 + 1) -1/3]
    [-1/3*zeta_3 -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3 -1/3*zeta_3 1/3*(zeta_3 + 1)]
    [-1/3 -1/3 -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3 1/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3*zeta_3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3 1/3*zeta_3]
------------------------------


43: the group name is C3*S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^2
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [1/3*(-2*zeta_3 - 1) 1/3*(4*zeta_3 + 2) 0 0 0]
    [1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0 0 0]
    [0 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]
    [0 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1)]
    [0 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 + 2) 1/3*(zeta_3 + 2)]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
------------------------------


44: the group name is C3*S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^2
Generators:
    [     -1       0       0       0       0]
    [      0       0       0       0 -zeta_3]
    [      0       0 -zeta_3       0       0]
    [      0       0       0 -zeta_3       0]
    [      0      -1       0       0       0]

    [          1           0           0           0           0]
    [          0      zeta_3           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0      zeta_3]

    [          1           0           0           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           1           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
------------------------------


45: the group name is C3*S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^2
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           1           0           0]
    [          0           0           0 -zeta_3 - 1           0]

    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 4) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 0 0]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]
------------------------------


46: the group name is C3*S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^2
Generators:
    [1 0 0 0 0]
    [0 0 1 0 0]
    [0 1 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2) 1/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 1/3 -2/3*zeta_3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1) 1/3]
    [1/3*(-zeta_3 - 1) 1/3 -2/3*zeta_3 1/3 1/3*zeta_3]

    [1/3 -2/3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3]
    [-1/3 2/3 -1/3*zeta_3 1/3*(zeta_3 + 1) -1/3]
    [-1/3*zeta_3 -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3 -1/3*zeta_3 1/3*(zeta_3 + 1)]
    [-1/3 -1/3 -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3]
------------------------------


47: the group name is C3*S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^2
Generators:
    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0           1           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           1           0           0           0]

    [          1           0           0           0           0]
    [          0      zeta_3           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0      zeta_3]

    [          1           0           0           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           1           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
------------------------------


48: the group name is C3*C6, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^2
Generators:
    [     1      0      0      0      0]
    [     0      1      0      0      0]
    [     0      0 zeta_3      0      0]
    [     0      0      0 zeta_3      0]
    [     0      0      0      0 zeta_3]

    [1/3*(2*zeta_3 + 1) 1/3*(-4*zeta_3 - 2) 0 0 0]
    [1/3*(zeta_3 - 1) 1/3*(zeta_3 - 1) 0 0 0]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2)]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 - 2)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]
------------------------------


49: the group name is   F5, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 5
Generators:
    [-1/3 2/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3]
    [1/3 -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3*zeta_3]
    [1/3 1/3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3]

    [ 1/3 -2/3 -2/3 -2/3 -2/3]
    [-1/3  2/3 -1/3 -1/3 -1/3]
    [-1/3 -1/3 -1/3  2/3 -1/3]
    [-1/3 -1/3  2/3 -1/3 -1/3]
    [-1/3 -1/3 -1/3 -1/3  2/3]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3 -2/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1)]
    [1/3 1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3]
------------------------------


50: the group name is C3^3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3^3
Generators:
    [     1      0      0      0      0]
    [     0      1      0      0      0]
    [     0      0 zeta_3      0      0]
    [     0      0      0 zeta_3      0]
    [     0      0      0      0 zeta_3]

    [1/3*(-2*zeta_3 - 1) 1/3*(4*zeta_3 + 2) 0 0 0]
    [1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0 0 0]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
------------------------------


51: the group name is  He3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3^3
Generators:
    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           1           0           0]
    [          0           0           0 -zeta_3 - 1           0]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3 -2/3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1)]

    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 4) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 0 0]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]
------------------------------


52: the group name is C9:C3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3^3
Generators:
    [1/3*(-2*zeta_3 - 1) 1/3*(4*zeta_3 + 2) 0 0 0]
    [1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0 0 0]
    [0 0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 + 2) 1/3*(zeta_3 + 2)]
    [0 0 1/3*(zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2)]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 1/3*(-2*zeta_3 - 2) -1/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3 -1/3*zeta_3 2/3]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3 2/3*zeta_3 -1/3]
------------------------------


53: the group name is C2^4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]

    [        -1          0          0          0          0]
    [         0          0          0          0 zeta_3 + 1]
    [         0          0         -1          0          0]
    [         0          0          0         -1          0]
    [         0    -zeta_3          0          0          0]

    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2) 1/3*zeta_3]
    [1/3 1/3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3]

    [-1/3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3*zeta_3]
    [1/3*zeta_3 1/3 1/3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 1/3 1/3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3*zeta_3 1/3 1/3]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*zeta_3 1/3 1/3]
------------------------------


54: the group name is D4:C2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]

    [1/3*(2*zeta_3 + 1) 1/3*(-4*zeta_3 - 2) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 0 0 0]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]

    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
    [-1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]

    [1/3 -2/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3 -1/3 -1/3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3 -1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]
------------------------------


55: the group name is C2*D4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4
Generators:
    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3*zeta_3]
    [1/3 -2/3 1/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3]

    [          1           0           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 -2/3*zeta_3 -2/3 -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 
        2)]
    [-1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 
        1)]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 2/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3 -1/3*zeta_3 -1/3 2/3*zeta_3 -1/3*zeta_3]

    [          1           0           0           0           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0      zeta_3           0           0]
    [          0      zeta_3           0           0           0]
------------------------------


56: the group name is C2^2:C4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4
Generators:
    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3*zeta_3]
    [1/3 -2/3 1/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3]

    [          1           0           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [        -1          0          0          0          0]
    [         0          0          0          0 zeta_3 + 1]
    [         0 zeta_3 + 1          0          0          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0    -zeta_3          0]

    [-1/3 2/3*zeta_3 2/3 2/3*zeta_3 2/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 
        2)]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 
        1)]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 
        1)]
    [1/3 -2/3*zeta_3 1/3 1/3*zeta_3 1/3*zeta_3]
------------------------------


57: the group name is C2^2:C4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4
Generators:
    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3*zeta_3]
    [1/3 -2/3 1/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3]

    [          1           0           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 -2/3*zeta_3 -2/3 -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 
        2)]
    [-1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 
        1)]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 2/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3 -1/3*zeta_3 -1/3 2/3*zeta_3 -1/3*zeta_3]

    [-1/3 2/3*zeta_3 2/3 2/3*zeta_3 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3 1/3]
    [1/3 1/3*zeta_3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3 1/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) 1/3 -2/3]
------------------------------


58: the group name is C2*D4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0    -zeta_3          0]
    [         0          0 zeta_3 + 1          0          0]
    [         0          0          0          0         -1]

    [1 0 0 0 0]
    [0 0 1 0 0]
    [0 1 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]

    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0      zeta_3           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0 -zeta_3 - 1           0           0           0]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3]
------------------------------


59: the group name is SL(2,3), the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [     1      0      0      0      0]
    [     0      1      0      0      0]
    [     0      0 zeta_3      0      0]
    [     0      0      0 zeta_3      0]
    [     0      0      0      0 zeta_3]

    [1/3*(2*zeta_3 + 1) 0 1/3*(-4*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1)]
    [1/3*(-2*zeta_3 - 1) 0 1/3*(-2*zeta_3 - 1) 0 0]
    [0 1/3*(-zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 1/3*(-zeta_3 - 2) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]

    [1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2)]
    [1/3*(zeta_3 + 2) 0 1/3*(-2*zeta_3 - 1) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 1/3*(-zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]
------------------------------


60: the group name is C2*A4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0    -zeta_3          0]
    [         0          0 zeta_3 + 1          0          0]
    [         0          0          0          0         -1]

    [-1/3 2/3*zeta_3 2/3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3*zeta_3 1/3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3*zeta_3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3*zeta_3 1/3]
    [1/3 1/3*zeta_3 -2/3 1/3 1/3*(-zeta_3 - 1)]

    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0      zeta_3           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0 -zeta_3 - 1           0           0           0]

    [1/3 -2/3*zeta_3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) 2/3 -1/3 -1/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3 -1/3 2/3*zeta_3 -1/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) -1/3 -1/3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3 2/3]
------------------------------


61: the group name is SL(2,3), the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 4) 0 0 0]
    [1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2) 0 0 0]
    [0 0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2)]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]

    [1/3*(2*zeta_3 + 1) 0 1/3*(-4*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1)]
    [1/3*(-2*zeta_3 - 1) 0 1/3*(-2*zeta_3 - 1) 0 0]
    [0 1/3*(-zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 1/3*(-zeta_3 - 2) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]

    [1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2)]
    [1/3*(zeta_3 + 2) 0 1/3*(-2*zeta_3 - 1) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 1/3*(-zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]
------------------------------


62: the group name is SL(2,3), the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [-1/3 2/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3 -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 -2/3*zeta_3]
    [1/3 1/3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3]

    [1/3*(2*zeta_3 + 1) 0 1/3*(-4*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1)]
    [1/3*(-2*zeta_3 - 1) 0 1/3*(-2*zeta_3 - 1) 0 0]
    [0 1/3*(-zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 1/3*(-zeta_3 - 2) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]

    [1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2)]
    [1/3*(zeta_3 + 2) 0 1/3*(-2*zeta_3 - 1) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 1/3*(-zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]
------------------------------


63: the group name is C3*Q8, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [-1/3 2/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3 1/3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3*zeta_3 1/3*(-zeta_3 - 1)]

    [1/3*(2*zeta_3 + 1) 0 1/3*(-4*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1)]
    [1/3*(-2*zeta_3 - 1) 0 1/3*(-2*zeta_3 - 1) 0 0]
    [0 1/3*(-zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 1/3*(-zeta_3 - 2) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]

    [1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2)]
    [1/3*(zeta_3 + 2) 0 1/3*(-2*zeta_3 - 1) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 1/3*(-zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]
------------------------------


64: the group name is   S4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [        -1          0          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0 zeta_3 + 1          0          0          0]
    [         0          0          0         -1          0]

    [1/3 -2/3 -2/3 -2/3 -2/3]
    [-1/3 2/3 -1/3 -1/3 -1/3]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3 2/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) 
        1/3*(zeta_3 + 1)]
    [-1/3 -1/3 -1/3 -1/3 2/3]

    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0      zeta_3           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0 -zeta_3 - 1           0           0           0]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3]
------------------------------


65: the group name is C2*A4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [     -1       0       0       0       0]
    [      0       0       0       0 -zeta_3]
    [      0       0 -zeta_3       0       0]
    [      0       0       0 -zeta_3       0]
    [      0      -1       0       0       0]

    [          1           0           0           0           0]
    [          0      zeta_3           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0      zeta_3]

    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2) 1/3*zeta_3]
    [1/3 1/3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3]

    [-1/3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3*zeta_3]
    [1/3*zeta_3 1/3 1/3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 1/3 1/3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3*zeta_3 1/3 1/3]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*zeta_3 1/3 1/3]
------------------------------


66: the group name is C2*A4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [1 0 0 0 0]
    [0 0 1 0 0]
    [0 1 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]

    [1/3 -2/3 -2/3 -2/3 -2/3]
    [-1/3 2/3 -1/3 -1/3 -1/3]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3 2/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) 
        1/3*(zeta_3 + 1)]
    [-1/3 -1/3 -1/3 -1/3 2/3]

    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0      zeta_3           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0 -zeta_3 - 1           0           0           0]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3]
------------------------------


67: the group name is   S4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [        -1          0          0          0          0]
    [         0          0          0    -zeta_3          0]
    [         0         -1          0          0          0]
    [         0          0          0          0         -1]
    [         0          0 zeta_3 + 1          0          0]

    [-1/3 2/3*zeta_3 2/3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3*zeta_3 1/3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3*zeta_3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3*zeta_3 1/3]
    [1/3 1/3*zeta_3 -2/3 1/3 1/3*(-zeta_3 - 1)]

    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0      zeta_3           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0 -zeta_3 - 1           0           0           0]

    [1/3 -2/3*zeta_3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) 2/3 -1/3 -1/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3 -1/3 2/3*zeta_3 -1/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) -1/3 -1/3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3 2/3]
------------------------------


68: the group name is   S4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           0 -zeta_3 - 1           0           0]

    [          1           0           0           0           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0           0           0           1           0]
    [          0           0           1           0           0]
    [          0      zeta_3           0           0           0]

    [          1           0           0           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0      zeta_3]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
------------------------------


69: the group name is C3:D4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0           0           0           1           0]
    [          0           0           1           0           0]
    [          0      zeta_3           0           0           0]

    [          1           0           0           0           0]
    [          0           0      zeta_3           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0 -zeta_3 - 1           0]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3]
    [1/3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*(-zeta_3 - 1)]
------------------------------


70: the group name is S3^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3^2
Generators:
    [-1  0  0  0  0]
    [ 0 -1  0  0  0]
    [ 0  0  0 -1  0]
    [ 0  0 -1  0  0]
    [ 0  0  0  0 -1]

    [1 0 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]
    [0 0 1 0 0]
    [0 1 0 0 0]

    [-1/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 -2/3*zeta_3 1/3]
    [1/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3 1/3*zeta_3 1/3]
    [1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1)]

    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
------------------------------


71: the group name is S3^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3^2
Generators:
    [1 0 0 0 0]
    [0 0 1 0 0]
    [0 1 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]

    [1 0 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]
    [0 0 1 0 0]
    [0 1 0 0 0]

    [-1/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 -2/3*zeta_3 1/3]
    [1/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3 1/3*zeta_3 1/3]
    [1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1)]

    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
------------------------------


72: the group name is C3:S3.C2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3^2
Generators:
    [-1  0  0  0  0]
    [ 0  0 -1  0  0]
    [ 0  0  0  0 -1]
    [ 0 -1  0  0  0]
    [ 0  0  0 -1  0]

    [1 0 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]
    [0 0 1 0 0]
    [0 1 0 0 0]

    [-1/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 -2/3*zeta_3 1/3]
    [1/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3 1/3*zeta_3 1/3]
    [1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1)]

    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
------------------------------


73: the group name is C6*S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3^2
Generators:
    [     -1       0       0       0       0]
    [      0       0       0       0 -zeta_3]
    [      0       0 -zeta_3       0       0]
    [      0       0       0 -zeta_3       0]
    [      0      -1       0       0       0]

    [     1      0      0      0      0]
    [     0      1      0      0      0]
    [     0      0 zeta_3      0      0]
    [     0      0      0 zeta_3      0]
    [     0      0      0      0 zeta_3]

    [          1           0           0           0           0]
    [          0      zeta_3           0           0           0]
    [          0           0           1           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0 -zeta_3 - 1]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


74: the group name is C3^2:S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3*zeta_3 -1/3]
    [-1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3]

    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 4) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 0 0]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]
------------------------------


75: the group name is C3*C3:S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^3
Generators:
    [          1           0           0           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0      zeta_3]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3*zeta_3 -1/3]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3 -1/3*zeta_3 2/3]

    [-1/3 2/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
    [1/3*zeta_3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]

    [1/3 1/3*(2*zeta_3 + 2) -2/3 -2/3*zeta_3 -2/3]
    [-1/3*zeta_3 2/3 -1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3 1/3*(zeta_3 + 1) 2/3 -1/3*zeta_3 -1/3]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3]
------------------------------


76: the group name is C3^2*S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0 -zeta_3 - 1]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 4) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 0 0]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]
------------------------------


77: the group name is   A5, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3 * 5
Generators:
    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 -1/3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) -1/3]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 2/3*zeta_3 -1/3 -1/3 -1/3*zeta_3]
    [-1/3*zeta_3 -1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3]
    [1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3 1/3*zeta_3]
------------------------------


78: the group name is   A5, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3 * 5
Generators:
    [-1/3 1/3*(-2*zeta_3 - 2) 2/3 2/3 2/3*zeta_3]
    [1/3*zeta_3 1/3 1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3 1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3]
    [1/3 1/3*(2*zeta_3 + 2) 1/3 1/3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0           1]
------------------------------


79: the group name is C3wrC3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 3^4
Generators:
    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0 -zeta_3 - 1]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3*zeta_3 -1/3]
    [-1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3]

    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 4) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 0 0]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]
------------------------------


80: the group name is Q8:C2^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^5
Generators:
    [1/3 1/3*(2*zeta_3 + 2) -2/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 -1/3 2/3]
    [-1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 2/3 -1/3]
    [-1/3*zeta_3 2/3 -1/3*zeta_3 -1/3 -1/3]

    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
    [-1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]

    [1/3 -2/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3 -1/3 -1/3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3 -1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]

    [1/3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) -1/3 -1/3*zeta_3 -1/3 2/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) -1/3]
    [1/3*(zeta_3 + 1) -1/3 -1/3*zeta_3 2/3 -1/3*zeta_3]
    [-1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3 1/3*(zeta_3 + 1) -1/3]
------------------------------


81: the group name is C2^2.D4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^5
Generators:
    [1/3 1/3*(2*zeta_3 + 2) -2/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 -1/3 2/3]
    [-1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 2/3 -1/3]
    [-1/3*zeta_3 2/3 -1/3*zeta_3 -1/3 -1/3]

    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
    [-1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1) 1/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 -2/3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 1/3 -2/3*zeta_3]

    [1/3 -2/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3 -1/3 -1/3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3 -1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]
------------------------------


82: the group name is C2^2wrC2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^5
Generators:
    [          1           0           0           0           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0      zeta_3           0           0]
    [          0      zeta_3           0           0           0]

    [-1/3 2/3*zeta_3 2/3 2/3*zeta_3 2/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 
        2)]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 
        1)]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 
        1)]
    [1/3 -2/3*zeta_3 1/3 1/3*zeta_3 1/3*zeta_3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0         -1          0]
    [         0          0 zeta_3 + 1          0          0]

    [          1           0           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 -2/3 -2/3*zeta_3 -2/3 1/3*(2*zeta_3 + 2)]
    [-1/3 -1/3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3 2/3 -1/3*zeta_3 -1/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
------------------------------


83: the group name is A4:C4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4 * 3
Generators:
    [1/3*(-2*zeta_3 - 1) 0 1/3*(-2*zeta_3 - 4) 0 0]
    [0 1/3*(zeta_3 - 1) 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1)]
    [0 1/3*(zeta_3 - 1) 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2)]
    [0 1/3*(zeta_3 + 2) 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [1/3*(-zeta_3 - 2) 0 1/3*(-zeta_3 + 1) 0 0]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0         -1          0]
    [         0          0 zeta_3 + 1          0          0]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1)]
    [1/3 -2/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1)]
    [1/3 1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2)]
    [1/3 1/3*zeta_3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1)]

    [          1           0           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 -2/3 -2/3*zeta_3 -2/3 1/3*(2*zeta_3 + 2)]
    [-1/3 -1/3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3 2/3 -1/3*zeta_3 -1/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
------------------------------


84: the group name is C2^2*A4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4 * 3
Generators:
    [     -1       0       0       0       0]
    [      0       0       0       0 -zeta_3]
    [      0       0 -zeta_3       0       0]
    [      0       0       0 -zeta_3       0]
    [      0      -1       0       0       0]

    [          1           0           0           0           0]
    [          0      zeta_3           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0      zeta_3]

    [-1/3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3*zeta_3]
    [1/3*zeta_3 1/3 1/3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 1/3 1/3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3*zeta_3 1/3 1/3]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*zeta_3 1/3 1/3]

    [-1/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3 1/3*zeta_3]
    [1/3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


85: the group name is SL(2,3):C2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4 * 3
Generators:
    [1/3 1/3*(2*zeta_3 + 2) -2/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 -1/3 2/3]
    [-1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 2/3 -1/3]
    [-1/3*zeta_3 2/3 -1/3*zeta_3 -1/3 -1/3]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0 -zeta_3 - 1]

    [1/3*(2*zeta_3 + 1) 0 0 0 1/3*(2*zeta_3 + 4)]
    [0 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 0]
    [0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 0]
    [0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0]
    [1/3*(zeta_3 - 1) 0 0 0 1/3*(-2*zeta_3 - 1)]

    [1/3*(2*zeta_3 + 1) 0 0 0 1/3*(2*zeta_3 - 2)]
    [0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1) 0]
    [0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 0]
    [0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0]
    [1/3*(zeta_3 + 2) 0 0 0 1/3*(-2*zeta_3 - 1)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


86: the group name is C2*S4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4 * 3
Generators:
    [-1/3 2/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3 1/3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3 1/3*zeta_3]
    [1/3 -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3]

    [-1/3 2/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3 1/3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3]
    [1/3 -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3]
    [1/3*zeta_3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3 1/3*zeta_3]

    [          1           0           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0      zeta_3           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0 -zeta_3 - 1           0           0           0]

    [1/3 -2/3*zeta_3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) -1/3 -1/3 -1/3*zeta_3 2/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3 2/3 -1/3*zeta_3 -1/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3 -1/3]
    [-1/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3 -1/3]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3*zeta_3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3 1/3]
------------------------------


87: the group name is C2*S4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4 * 3
Generators:
    [-1/3 1/3*(-2*zeta_3 - 2) 2/3 2/3 2/3*zeta_3]
    [1/3*zeta_3 1/3 1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3 1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3]
    [1/3 1/3*(2*zeta_3 + 2) 1/3 1/3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3]

    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) 2/3*zeta_3 -1/3]
    [-1/3 -1/3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3 -1/3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3*zeta_3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3 1/3]

    [1 0 0 0 0]
    [0 0 1 0 0]
    [0 1 0 0 0]
    [0 0 0 0 1]
    [0 0 0 1 0]

    [          1           0           0           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0      zeta_3]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
------------------------------


88: the group name is S3wrC2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3^2
Generators:
    [-1/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3]
    [1/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 -2/3*zeta_3 1/3]
    [1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3 1/3*zeta_3 1/3]

    [-1  0  0  0  0]
    [ 0 -1  0  0  0]
    [ 0  0  0 -1  0]
    [ 0  0 -1  0  0]
    [ 0  0  0  0 -1]

    [-1/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3]
    [1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3 1/3*zeta_3 1/3]
    [1/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 -2/3*zeta_3 1/3]

    [-1/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 -2/3*zeta_3 1/3]
    [1/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3 1/3*zeta_3 1/3]
    [1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1)]

    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3 1/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3*zeta_3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3 1/3*zeta_3]
------------------------------


89: the group name is C3*SL(2,3), the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3^2
Generators:
    [     1      0      0      0      0]
    [     0      1      0      0      0]
    [     0      0 zeta_3      0      0]
    [     0      0      0 zeta_3      0]
    [     0      0      0      0 zeta_3]

    [-1/3 2/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3 1/3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3*zeta_3 1/3*(-zeta_3 - 1)]

    [1/3 -2/3 -2/3 -2/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) -1/3 -1/3*zeta_3]
    [-1/3 2/3 -1/3 -1/3*zeta_3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3]
    [-1/3 -1/3 -1/3 -1/3*zeta_3 1/3*(-2*zeta_3 - 2)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [1/3*(-2*zeta_3 - 1) 1/3*(4*zeta_3 + 2) 0 0 0]
    [1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0 0 0]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]
------------------------------


90: the group name is C2^4:C5, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4 * 5
Generators:
    [-1/3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*zeta_3 1/3 1/3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*zeta_3 1/3 -2/3]
    [1/3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*zeta_3 -2/3 1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0         -1          0]
    [         0          0 zeta_3 + 1          0          0]

    [-1  0  0  0  0]
    [ 0  0  0 -1  0]
    [ 0  0 -1  0  0]
    [ 0 -1  0  0  0]
    [ 0  0  0  0 -1]

    [1/3 -2/3 -2/3*zeta_3 -2/3 1/3*(2*zeta_3 + 2)]
    [-1/3 2/3 -1/3*zeta_3 -1/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3 -1/3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3 -1/3]

    [1/3 -2/3*zeta_3 -2/3 -2/3*zeta_3 -2/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1) 2/3 -1/3]
    [-1/3 -1/3*zeta_3 2/3 -1/3*zeta_3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) -1/3 -1/3]
    [1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1) -1/3 2/3]
------------------------------


91: the group name is C3^3:C2^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3^3
Generators:
    [          1           0           0           0           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0           0           0           1           0]
    [          0           0           1           0           0]
    [          0      zeta_3           0           0           0]

    [          1           0           0           0           0]
    [          0           0      zeta_3           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0 -zeta_3 - 1           0]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 2/3 -1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3]
    [-1/3*zeta_3 -1/3 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 -1/3 2/3]

    [1/3 1/3*(2*zeta_3 + 2) -2/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 2/3 -1/3*zeta_3 -1/3 -1/3]
    [-1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3*zeta_3]
    [-1/3 1/3*(zeta_3 + 1) -1/3 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1)]

    [-1/3 2/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
    [1/3*zeta_3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
------------------------------


92: the group name is C3^2:S3.C2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3^3
Generators:
    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3 -2/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3*zeta_3 1/3*(zeta_3 + 1) -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3 -1/3*zeta_3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           1           0           0]
    [          0           0           0 -zeta_3 - 1           0]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 2/3 -1/3 -1/3*zeta_3 -1/3]
    [-1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 2/3 -1/3*zeta_3 -1/3]
    [-1/3*zeta_3 -1/3 -1/3 -1/3*zeta_3 2/3]

    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 4) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 0 0]
    [0 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]
------------------------------


93: the group name is C3*S3^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3^3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           0      zeta_3           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0 -zeta_3 - 1           0]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 2/3 -1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3]
    [-1/3*zeta_3 -1/3 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 -1/3 2/3]

    [1/3 1/3*(2*zeta_3 + 2) -2/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 2/3 -1/3*zeta_3 -1/3 -1/3]
    [-1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3*zeta_3]
    [-1/3 1/3*(zeta_3 + 1) -1/3 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1)]

    [-1/3 2/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
    [1/3*zeta_3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
------------------------------


94: the group name is C3^2:(C3:C4), the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3^3
Generators:
    [        -1          0          0          0          0]
    [         0          0          0          0 zeta_3 + 1]
    [         0          0          0         -1          0]
    [         0 zeta_3 + 1          0          0          0]
    [         0          0 zeta_3 + 1          0          0]

    [          1           0           0           0           0]
    [          0           0      zeta_3           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           0 -zeta_3 - 1           0]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 2/3 -1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3]
    [-1/3*zeta_3 -1/3 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 -1/3 2/3]

    [1/3 1/3*(2*zeta_3 + 2) -2/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 2/3 -1/3*zeta_3 -1/3 -1/3]
    [-1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3*zeta_3]
    [-1/3 1/3*(zeta_3 + 1) -1/3 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1)]

    [-1/3 2/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
    [1/3*zeta_3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
------------------------------


95: the group name is   S5, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3 * 5
Generators:
    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 -2/3]

    [        -1          0          0          0          0]
    [         0          0          0          0 zeta_3 + 1]
    [         0          0 zeta_3 + 1          0          0]
    [         0          0          0    -zeta_3          0]
    [         0    -zeta_3          0          0          0]
------------------------------


96: the group name is   S5, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3 * 5
Generators:
    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3*zeta_3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3 1/3]

    [          1           0           0           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0      zeta_3           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
------------------------------


97: the group name is C3wrS3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2 * 3^4
Generators:
    [     1      0      0      0      0]
    [     0      1      0      0      0]
    [     0      0 zeta_3      0      0]
    [     0      0      0 zeta_3      0]
    [     0      0      0      0 zeta_3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           1           0           0]
    [          0           0           0 -zeta_3 - 1           0]

    [1/3 1/3*(2*zeta_3 + 2) -2/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 2/3 -1/3*zeta_3 -1/3 -1/3]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 2/3 -1/3]
    [-1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 -1/3 2/3]

    [1/3*(-2*zeta_3 - 1) 1/3*(4*zeta_3 + 2) 0 0 0]
    [1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0 0 0]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]
------------------------------


98: the group name is C2wrC2^2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^6
Generators:
    [-1  0  0  0  0]
    [ 0  0  0  0 -1]
    [ 0  0 -1  0  0]
    [ 0  0  0 -1  0]
    [ 0 -1  0  0  0]

    [1/3 -2/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3 -1/3 -1/3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3 -1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]

    [1/3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) -1/3 -1/3*zeta_3 -1/3 2/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) -1/3]
    [1/3*(zeta_3 + 1) -1/3 -1/3*zeta_3 2/3 -1/3*zeta_3]
    [-1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3 1/3*(zeta_3 + 1) -1/3]

    [1/3 -2/3*zeta_3 -2/3 1/3*(2*zeta_3 + 2) -2/3]
    [1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [-1/3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3*zeta_3]
    [-1/3 2/3*zeta_3 -1/3 1/3*(zeta_3 + 1) -1/3]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 -1/3 -1/3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2)]
    [-1/3*zeta_3 -1/3 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3]
    [1/3*(zeta_3 + 1) 2/3*zeta_3 -1/3*zeta_3 -1/3 -1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


99: the group name is C2^3:A4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^5 * 3
Generators:
    [          1           0           0           0           0]
    [          0      zeta_3           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]
    [          0           0           0 -zeta_3 - 1           0]
    [          0           0           0           0      zeta_3]

    [-1/3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3*zeta_3]
    [1/3*zeta_3 1/3 1/3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 1/3 1/3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3*zeta_3 1/3 1/3]
    [1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*zeta_3 1/3 1/3]

    [1/3*(2*zeta_3 + 1) 0 0 0 1/3*(-4*zeta_3 - 2)]
    [0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 - 2) 0]
    [0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 0]
    [0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0]
    [1/3*(-2*zeta_3 - 1) 0 0 0 1/3*(-2*zeta_3 - 1)]

    [1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 - 2) 0 0 0]
    [1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 0 0 0]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1)]

    [1/3*(2*zeta_3 + 1) 1/3*(-4*zeta_3 - 2) 0 0 0]
    [1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 0 0 0]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1)]
    [0 0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


100: the group name is C2^3:A4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^5 * 3
Generators:
    [          1           0           0           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0           1           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]

    [1/3 -2/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3 -1/3 -1/3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3 -1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]

    [1/3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) -1/3 -1/3*zeta_3 -1/3 2/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) -1/3]
    [1/3*(zeta_3 + 1) -1/3 -1/3*zeta_3 2/3 -1/3*zeta_3]
    [-1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3 1/3*(zeta_3 + 1) -1/3]

    [1/3 -2/3*zeta_3 -2/3 1/3*(2*zeta_3 + 2) -2/3]
    [1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [-1/3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3*zeta_3]
    [-1/3 2/3*zeta_3 -1/3 1/3*(zeta_3 + 1) -1/3]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 -1/3 -1/3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2)]
    [-1/3*zeta_3 -1/3 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3]
    [1/3*(zeta_3 + 1) 2/3*zeta_3 -1/3*zeta_3 -1/3 -1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


101: the group name is Q8.A4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^5 * 3
Generators:
    [     1      0      0      0      0]
    [     0      1      0      0      0]
    [     0      0 zeta_3      0      0]
    [     0      0      0 zeta_3      0]
    [     0      0      0      0 zeta_3]

    [1/3*(2*zeta_3 + 1) 0 0 0 1/3*(2*zeta_3 - 2)]
    [0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1) 0]
    [0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 0]
    [0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0]
    [1/3*(zeta_3 + 2) 0 0 0 1/3*(-2*zeta_3 - 1)]

    [1/3*(2*zeta_3 + 1) 0 0 0 1/3*(-4*zeta_3 - 2)]
    [0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 - 2) 0]
    [0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 + 1) 1/3*(2*zeta_3 + 1) 0]
    [0 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0]
    [1/3*(-2*zeta_3 - 1) 0 0 0 1/3*(-2*zeta_3 - 1)]

    [1/3 -2/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3 -1/3 -1/3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3 -1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]

    [1/3 1/3*(2*zeta_3 + 2) -2/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 -1/3 2/3]
    [-1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 2/3 -1/3]
    [-1/3*zeta_3 2/3 -1/3*zeta_3 -1/3 -1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


102: the group name is GL(2,Z/4), the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^5 * 3
Generators:
    [1/3*(-2*zeta_3 - 1) 0 1/3*(-2*zeta_3 - 4) 0 0]
    [0 1/3*(zeta_3 - 1) 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1)]
    [0 1/3*(zeta_3 - 1) 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2)]
    [0 1/3*(zeta_3 + 2) 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [1/3*(-zeta_3 - 2) 0 1/3*(-zeta_3 + 1) 0 0]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [-1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3]
    [-1/3 1/3*(zeta_3 + 1) 2/3*zeta_3 -1/3*zeta_3 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3 2/3 -1/3*zeta_3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0         -1          0]
    [         0          0 zeta_3 + 1          0          0]

    [-1  0  0  0  0]
    [ 0  0  0 -1  0]
    [ 0  0 -1  0  0]
    [ 0 -1  0  0  0]
    [ 0  0  0  0 -1]

    [-1/3 2/3*zeta_3 2/3 2/3*zeta_3 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3 1/3]
    [1/3 1/3*zeta_3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3 1/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) 1/3 -2/3]

    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 -2/3 1/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
    [1/3 1/3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3]
------------------------------


103: the group name is C2^4:D5, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^5 * 5
Generators:
    [-1/3 1/3*(-2*zeta_3 - 2) 2/3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*zeta_3 -2/3 1/3*zeta_3 1/3 1/3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3 1/3*zeta_3 -2/3 1/3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3*zeta_3]

    [1/3*(-2*zeta_3 - 1) 0 1/3*(-2*zeta_3 + 2) 0 0]
    [1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 + 1) 0 0]
    [0 1/3*(zeta_3 - 1) 0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [0 1/3*(zeta_3 - 1) 0 1/3*(zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]
    [0 1/3*(zeta_3 - 1) 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 + 2)]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0         -1          0]
    [         0          0 zeta_3 + 1          0          0]

    [-1  0  0  0  0]
    [ 0  0  0 -1  0]
    [ 0  0 -1  0  0]
    [ 0 -1  0  0  0]
    [ 0  0  0  0 -1]

    [-1/3 2/3*zeta_3 2/3 2/3*zeta_3 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3 1/3]
    [1/3 1/3*zeta_3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3 1/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) 1/3 -2/3]

    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 -2/3 1/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
    [1/3 1/3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3]
------------------------------


104: the group name is SU(3,2), the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3^3
Generators:
    [1/3 -2/3*zeta_3 -2/3*zeta_3 -2/3 -2/3*zeta_3]
    [-1/3 -1/3*zeta_3 2/3*zeta_3 -1/3 -1/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 
        2)]
    [1/3*(zeta_3 + 1) 2/3 -1/3 1/3*(zeta_3 + 1) -1/3]
    [-1/3 -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3*zeta_3]

    [1/3 -2/3 -2/3*zeta_3 -2/3*zeta_3 -2/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3 -1/3 2/3]
    [-1/3*zeta_3 -1/3*zeta_3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 
        1)]
    [-1/3 2/3 -1/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3]
    [-1/3 -1/3 2/3*zeta_3 -1/3*zeta_3 -1/3*zeta_3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           0      zeta_3]
    [          0           0           1           0           0]
    [          0           0           0 -zeta_3 - 1           0]

    [1/3 1/3*(2*zeta_3 + 2) -2/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 2/3 -1/3*zeta_3 -1/3 -1/3]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 2/3 -1/3]
    [-1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 -1/3*zeta_3 -1/3 2/3]

    [1/3*(-2*zeta_3 - 1) 1/3*(4*zeta_3 + 2) 0 0 0]
    [1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0 0 0]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]
------------------------------


105: the group name is S3^2:S3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3^3
Generators:
    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0         -1          0          0]
    [         0          0          0          0    -zeta_3]
    [         0          0          0 zeta_3 + 1          0]

    [          1           0           0           0           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0           0           0           1           0]
    [          0           0           1           0           0]
    [          0      zeta_3           0           0           0]

    [          1           0           0           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0      zeta_3]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 2/3 -1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3]
    [-1/3*zeta_3 -1/3 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 -1/3 2/3]

    [-1/3 2/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3]

    [1/3 -2/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3*zeta_3 -1/3]
    [-1/3 -1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
------------------------------


106: the group name is C3^3:C2^2:C3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^2 * 3^4
Generators:
    [          1           0           0           0           0]
    [          0           1           0           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0      zeta_3]
    [          0           0 -zeta_3 - 1           0           0]

    [          1           0           0           0           0]
    [          0           0           0           0 -zeta_3 - 1]
    [          0           0           0           1           0]
    [          0           0           1           0           0]
    [          0      zeta_3           0           0           0]

    [          1           0           0           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0      zeta_3]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0 -zeta_3 - 1           0           0]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 2/3 -1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3]
    [-1/3*zeta_3 -1/3 2/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 -1/3 2/3]

    [-1/3 2/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3]

    [1/3 -2/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3*zeta_3 -1/3]
    [-1/3 -1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
------------------------------


107: the group name is   A6, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3^2 * 5
Generators:
    [-1/3 2/3*zeta_3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3 -2/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3*zeta_3 -2/3*zeta_3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3 1/3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3 1/3]

    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3]
    [-1/3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3*zeta_3 -1/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3*zeta_3 -1/3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3]
------------------------------


108: the group name is C2^3:S4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^6 * 3
Generators:
    [-1  0  0  0  0]
    [ 0  0  0  0 -1]
    [ 0  0 -1  0  0]
    [ 0  0  0 -1  0]
    [ 0 -1  0  0  0]

    [          1           0           0           0           0]
    [          0      zeta_3           0           0           0]
    [          0           0           1           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0 -zeta_3 - 1]

    [1/3 -2/3*zeta_3 -2/3 1/3*(2*zeta_3 + 2) -2/3]
    [1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [-1/3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3*zeta_3]
    [-1/3 2/3*zeta_3 -1/3 1/3*(zeta_3 + 1) -1/3]

    [1/3 -2/3*zeta_3 -2/3*zeta_3 -2/3 -2/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3 -1/3 1/3*(zeta_3 + 1) 2/3]
    [1/3*(zeta_3 + 1) -1/3 2/3 1/3*(zeta_3 + 1) -1/3]
    [-1/3 -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 2/3 -1/3 1/3*(zeta_3 + 1) -1/3]

    [-1/3 2/3 2/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3]
    [1/3 1/3 1/3 1/3*(-zeta_3 - 1) -2/3*zeta_3]
    [1/3 1/3 1/3 1/3*(2*zeta_3 + 2) 1/3*zeta_3]
    [1/3*zeta_3 1/3*zeta_3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 1/3 -2/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2) 1/3]
    [1/3*(-zeta_3 - 1) 1/3 -2/3*zeta_3 1/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1) 1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


109: the group name is C2wrA4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^6 * 3
Generators:
    [     -1       0       0       0       0]
    [      0       0       0       0 -zeta_3]
    [      0       0 -zeta_3       0       0]
    [      0       0       0 -zeta_3       0]
    [      0      -1       0       0       0]

    [          1           0           0           0           0]
    [          0 -zeta_3 - 1           0           0           0]
    [          0           0      zeta_3           0           0]
    [          0           0           0      zeta_3           0]
    [          0           0           0           0 -zeta_3 - 1]

    [1/3 -2/3*zeta_3 -2/3 1/3*(2*zeta_3 + 2) -2/3]
    [1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [-1/3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3*zeta_3]
    [-1/3 2/3*zeta_3 -1/3 1/3*(zeta_3 + 1) -1/3]

    [1/3 -2/3*zeta_3 -2/3*zeta_3 -2/3 -2/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3 -1/3 1/3*(zeta_3 + 1) 2/3]
    [1/3*(zeta_3 + 1) -1/3 2/3 1/3*(zeta_3 + 1) -1/3]
    [-1/3 -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 2/3 -1/3 1/3*(zeta_3 + 1) -1/3]

    [-1/3 2/3 2/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3]
    [1/3 1/3 1/3 1/3*(-zeta_3 - 1) -2/3*zeta_3]
    [1/3 1/3 1/3 1/3*(2*zeta_3 + 2) 1/3*zeta_3]
    [1/3*zeta_3 1/3*zeta_3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 1/3 -2/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2) 1/3]
    [1/3*(-zeta_3 - 1) 1/3 -2/3*zeta_3 1/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1) 1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


110: the group name is SL(2,3):A4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^5 * 3^2
Generators:
    [     1      0      0      0      0]
    [     0      1      0      0      0]
    [     0      0 zeta_3      0      0]
    [     0      0      0 zeta_3      0]
    [     0      0      0      0 zeta_3]

    [          1           0           0           0           0]
    [          0      zeta_3           0           0           0]
    [          0           0           1           0           0]
    [          0           0           0           1           0]
    [          0           0           0           0 -zeta_3 - 1]

    [1/3 -2/3*zeta_3 -2/3 1/3*(2*zeta_3 + 2) -2/3]
    [1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [-1/3 -1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3*zeta_3]
    [-1/3 2/3*zeta_3 -1/3 1/3*(zeta_3 + 1) -1/3]

    [1/3 -2/3*zeta_3 -2/3*zeta_3 -2/3 -2/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3 -1/3 1/3*(zeta_3 + 1) 2/3]
    [1/3*(zeta_3 + 1) -1/3 2/3 1/3*(zeta_3 + 1) -1/3]
    [-1/3 -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 2/3 -1/3 1/3*(zeta_3 + 1) -1/3]

    [-1/3 2/3 2/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3]
    [1/3 1/3 1/3 1/3*(-zeta_3 - 1) -2/3*zeta_3]
    [1/3 1/3 1/3 1/3*(2*zeta_3 + 2) 1/3*zeta_3]
    [1/3*zeta_3 1/3*zeta_3 -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 1/3 -2/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2) 1/3]
    [1/3*(-zeta_3 - 1) 1/3 -2/3*zeta_3 1/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1) 1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


111: the group name is SU(3,2).C3, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3^4
Generators:
    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3 1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3]
    [1/3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3*(-zeta_3 - 1)]

    [1/3 -2/3 1/3*(2*zeta_3 + 2) -2/3 -2/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3*zeta_3 1/3*(zeta_3 + 1) -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3]
    [-1/3 2/3 1/3*(zeta_3 + 1) -1/3 -1/3*zeta_3]

    [1/3*(2*zeta_3 + 1) 0 0 1/3*(2*zeta_3 + 4) 0]
    [0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 + 1) 0 1/3*(2*zeta_3 + 1)]
    [1/3*(zeta_3 - 1) 0 0 1/3*(-2*zeta_3 - 1) 0]
    [0 1/3*(-zeta_3 - 2) 1/3*(-zeta_3 - 2) 0 1/3*(2*zeta_3 + 1)]
    [0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2) 0 1/3*(-zeta_3 - 2)]

    [-1/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3 2/3]
    [1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*zeta_3]
    [1/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1)]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3*zeta_3]
    [-1/3*zeta_3 2/3 -1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1)]
    [-1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3*zeta_3]
    [1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3 2/3 -1/3]
    [-1/3 1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) -1/3*zeta_3 -1/3*zeta_3]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1)]
    [-1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3*zeta_3 -1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 1/3*(-2*zeta_3 - 2) -1/3 1/3*(zeta_3 + 1)]

    [1/3*(-2*zeta_3 - 1) 1/3*(4*zeta_3 + 2) 0 0 0]
    [1/3*(-zeta_3 + 1) 1/3*(-zeta_3 + 1) 0 0 0]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1)]
------------------------------


112: the group name is C3^3.S4, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^3 * 3^4
Generators:
    [-1/3 2/3 1/3*(-2*zeta_3 - 2) 2/3 2/3*zeta_3]
    [1/3 -2/3 1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*zeta_3 -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3 1/3 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3 1/3*(zeta_3 + 1)]
    [-1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 1/3*(zeta_3 + 1) 2/3*zeta_3]
    [-1/3*zeta_3 -1/3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1)]
    [-1/3*zeta_3 -1/3 1/3*(-2*zeta_3 - 2) -1/3 1/3*(zeta_3 + 1)]

    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 -2/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3]
    [1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3 1/3*zeta_3]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3]

    [-1/3 2/3*zeta_3 2/3*zeta_3 2/3*zeta_3 2/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3 1/3*(2*zeta_3 + 2)]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3 1/3*(-zeta_3 - 1)]
    [1/3 1/3*zeta_3 -2/3*zeta_3 1/3*zeta_3 1/3]

    [1/3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 -2/3 -2/3]
    [-1/3*zeta_3 2/3 1/3*(zeta_3 + 1) -1/3*zeta_3 -1/3*zeta_3]
    [-1/3*zeta_3 -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3*zeta_3]
    [-1/3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3 -1/3]
    [-1/3*zeta_3 -1/3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3 -1/3*zeta_3]

    [1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 - 2) 0 0]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(2*zeta_3 + 1) 1/3*(-zeta_3 - 2)]
    [1/3*(zeta_3 - 1) 0 1/3*(zeta_3 + 2) 0 0]
    [0 1/3*(-zeta_3 - 2) 0 1/3*(2*zeta_3 + 1) 1/3*(2*zeta_3 + 1)]
    [0 1/3*(2*zeta_3 + 1) 0 1/3*(-zeta_3 - 2) 1/3*(2*zeta_3 + 1)]

    [-1/3 2/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 -2/3*zeta_3 1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3 1/3*zeta_3]
------------------------------


113: the group name is   S6, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^4 * 3^2 * 5
Generators:
    [-1/3 2/3*zeta_3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 1/3*(-2*zeta_3 - 2)]
    [1/3*zeta_3 1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3]
    [1/3*zeta_3 1/3*(2*zeta_3 + 2) 1/3 1/3*(-zeta_3 - 1) 1/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 1/3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*zeta_3 -2/3 1/3*zeta_3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0    -zeta_3          0]
    [         0          0 zeta_3 + 1          0          0]
    [         0          0          0          0         -1]
------------------------------


114: the group name is C2.A4wrC2, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^6 * 3^2
Generators:
    [-1/3 2/3*zeta_3 2/3*zeta_3 2/3 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3 1/3 1/3*(-zeta_3 - 1) 1/3]
    [1/3*(-zeta_3 - 1) 1/3 -2/3 1/3*(-zeta_3 - 1) 1/3]
    [1/3 1/3*zeta_3 1/3*zeta_3 -2/3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3 1/3*(-zeta_3 - 1) -2/3]

    [1/3*(-2*zeta_3 - 1) 0 0 0 1/3*(4*zeta_3 + 2)]
    [0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2) 0]
    [0 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 0]
    [0 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 0]
    [1/3*(-zeta_3 + 1) 0 0 0 1/3*(-zeta_3 + 1)]

    [1/3 -2/3 -2/3*zeta_3 -2/3 1/3*(2*zeta_3 + 2)]
    [-1/3*zeta_3 -1/3*zeta_3 1/3*(zeta_3 + 1) -1/3*zeta_3 2/3]
    [-1/3*zeta_3 -1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3 -1/3]
    [1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) -1/3 1/3*(-2*zeta_3 - 2) -1/3*zeta_3]
    [1/3*(zeta_3 + 1) 1/3*(-2*zeta_3 - 2) -1/3 1/3*(zeta_3 + 1) -1/3*zeta_3]

    [-1/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3 2/3]
    [1/3*zeta_3 1/3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1)]
    [1/3 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3 1/3]
    [1/3 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3 1/3]

    [-1/3 2/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3 2/3]
    [1/3 1/3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3]
    [1/3*zeta_3 1/3*zeta_3 1/3 1/3*(2*zeta_3 + 2) 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3 -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3 1/3]

    [1/3 -2/3*zeta_3 1/3*(2*zeta_3 + 2) -2/3*zeta_3 1/3*(2*zeta_3 + 2)]
    [1/3*(zeta_3 + 1) -1/3 -1/3*zeta_3 -1/3 2/3*zeta_3]
    [-1/3*zeta_3 1/3*(zeta_3 + 1) 2/3 1/3*(zeta_3 + 1) -1/3]
    [1/3*(zeta_3 + 1) -1/3 -1/3*zeta_3 2/3 -1/3*zeta_3]
    [-1/3*zeta_3 1/3*(-2*zeta_3 - 2) -1/3 1/3*(zeta_3 + 1) -1/3]

    [-1/3 1/3*(-2*zeta_3 - 2) 2/3 1/3*(-2*zeta_3 - 2) 1/3*(-2*zeta_3 - 2)]
    [1/3*zeta_3 1/3 1/3*zeta_3 1/3 -2/3]
    [1/3 1/3*(-zeta_3 - 1) 1/3 1/3*(2*zeta_3 + 2) 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3 -2/3*zeta_3 1/3 1/3]
    [1/3*zeta_3 -2/3 1/3*zeta_3 1/3 1/3]

    [        -1          0          0          0          0]
    [         0         -1          0          0          0]
    [         0          0          0 zeta_3 + 1          0]
    [         0          0    -zeta_3          0          0]
    [         0          0          0          0         -1]
------------------------------


115: the group name is C2^4.A5, the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^6 * 3 * 5
Generators:
    [1/3*(-2*zeta_3 - 1) 0 0 1/3*(4*zeta_3 + 2) 0]
    [1/3*(2*zeta_3 + 1) 0 0 1/3*(2*zeta_3 + 1) 0]
    [0 1/3*(zeta_3 - 1) 1/3*(zeta_3 - 1) 0 1/3*(zeta_3 - 1)]
    [0 1/3*(-2*zeta_3 - 1) 1/3*(zeta_3 + 2) 0 1/3*(zeta_3 - 1)]
    [0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 0 1/3*(zeta_3 - 1)]

    [-1/3 2/3 2/3 1/3*(-2*zeta_3 - 2) 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3]
    [1/3*zeta_3 1/3*zeta_3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) 1/3*(2*zeta_3 + 2) 1/3*zeta_3 1/3]
    [1/3*zeta_3 -2/3*zeta_3 1/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]

    [-1/3 2/3*zeta_3 2/3 2/3*zeta_3 2/3*zeta_3]
    [1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3 1/3]
    [1/3 1/3*zeta_3 -2/3 1/3*zeta_3 1/3*zeta_3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) -2/3 1/3]
    [1/3*(-zeta_3 - 1) 1/3 1/3*(-zeta_3 - 1) 1/3 -2/3]

    [-1/3 2/3 2/3*zeta_3 2/3 1/3*(-2*zeta_3 - 2)]
    [1/3 -2/3 1/3*zeta_3 1/3 1/3*(-zeta_3 - 1)]
    [1/3*(-zeta_3 - 1) 1/3*(-zeta_3 - 1) -2/3 1/3*(-zeta_3 - 1) 1/3*zeta_3]
    [1/3 1/3 1/3*zeta_3 -2/3 1/3*(-zeta_3 - 1)]
    [1/3*zeta_3 1/3*zeta_3 1/3*(-zeta_3 - 1) 1/3*zeta_3 -2/3]

    [-1  0  0  0  0]
    [ 0  0  0 -1  0]
    [ 0  0 -1  0  0]
    [ 0 -1  0  0  0]
    [ 0  0  0  0 -1]

    [1/3 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) 1/3*(2*zeta_3 + 2) -2/3]
    [-1/3*zeta_3 -1/3 -1/3 2/3 -1/3*zeta_3]
    [-1/3*zeta_3 -1/3 2/3 -1/3 -1/3*zeta_3]
    [-1/3*zeta_3 2/3 -1/3 -1/3 -1/3*zeta_3]
    [-1/3 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 1/3*(zeta_3 + 1) 2/3]
------------------------------


116: the group name is C(2,3), the generators are:
MatrixGroup(5, Cyclotomic Field of order 3 and degree 2) of order 2^6 * 3^4 * 5
Generators:
    [1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 + 2) 0 0 0]
    [1/3*(-zeta_3 + 1) 1/3*(-zeta_3 - 2) 0 0 0]
    [0 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1)]
    [0 0 1/3*(zeta_3 + 2) 1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2)]
    [0 0 1/3*(zeta_3 - 1) 1/3*(zeta_3 + 2) 1/3*(zeta_3 + 2)]

    [1/3*(-2*zeta_3 - 1) 0 0 1/3*(-2*zeta_3 + 2) 0]
    [0 1/3*(-2*zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 0 1/3*(zeta_3 + 2)]
    [0 1/3*(zeta_3 - 1) 1/3*(-2*zeta_3 - 1) 0 1/3*(zeta_3 - 1)]
    [1/3*(2*zeta_3 + 1) 0 0 1/3*(-zeta_3 + 1) 0]
    [0 1/3*(zeta_3 + 2) 1/3*(-2*zeta_3 - 1) 0 1/3*(-2*zeta_3 - 1)]
------------------------------