Picard group of <span style="text-decoration: overline;"> M</span><sub>0,6</sub>

Picard group of M0,6


This page displays a subgroup lattice of S6, and the corresponding list of G-invariant Picard groups of M0,6, a smooth model of the Segre cubic.

Notice that H1(G,Pic( M0,6))=0 for all subgroups G of S6. But there are three conjugacy classes starred in the subgroup lattice, #9, 30 and 48, having nontrivial first cohomology of the dual of the Picard module. This is specified in the list below.

Here is the source code.


Partially ordered set of subgroup classes
-----------------------------------------

[56]  Order 720  Length 1   Maximal Subgroups: 50 51 52 53 54 55
---
[55]  Order 360  Length 1   Maximal Subgroups: 39 42 47 48 49
---
[54]  Order 120  Length 6   Maximal Subgroups: 32 37 40 49
[53]  Order 120  Length 6   Maximal Subgroups: 33 37 44 48
[52]  Order 72   Length 10  Maximal Subgroups: 29 45 46 47
[51]  Order 48   Length 15  Maximal Subgroups: 32 38 40 41 42
[50]  Order 48   Length 15  Maximal Subgroups: 33 38 39 43 44
---
[49]  Order 60   Length 6   Maximal Subgroups: 17 22 31
*[48]  Order 60   Length 6   Maximal Subgroups: 19 22 30
[47]  Order 36   Length 10  Maximal Subgroups: 10 34
[46]  Order 36   Length 10  Maximal Subgroups: 33 34 35
[45]  Order 36   Length 10  Maximal Subgroups: 32 34 36
[44]  Order 24   Length 15  Maximal Subgroups: 16 28 30
[43]  Order 24   Length 15  Maximal Subgroups: 18 24 30
[42]  Order 24   Length 15  Maximal Subgroups: 17 27 31
[41]  Order 24   Length 15  Maximal Subgroups: 20 23 31
[40]  Order 24   Length 15  Maximal Subgroups: 15 26 31
[39]  Order 24   Length 15  Maximal Subgroups: 19 27 30
[38]  Order 16   Length 45  Maximal Subgroups: 23 24 25 26 27 28 29
---
[37]  Order 20   Length 36  Maximal Subgroups: 13 22
[36]  Order 18   Length 20  Maximal Subgroups: 15 20 21
[35]  Order 18   Length 20  Maximal Subgroups: 16 18 21
[34]  Order 18   Length 10  Maximal Subgroups: 17 19 21
[33]  Order 12   Length 60  Maximal Subgroups: 12 16 18 19
[32]  Order 12   Length 60  Maximal Subgroups: 11 15 17 20
[31]  Order 12   Length 15  Maximal Subgroups: 5 8
*[30]  Order 12   Length 15  Maximal Subgroups: 6 9
[29]  Order 8    Length 45  Maximal Subgroups: 10 11 12
[28]  Order 8    Length 45  Maximal Subgroups: 9 12 13
[27]  Order 8    Length 45  Maximal Subgroups: 8 9 10
[26]  Order 8    Length 45  Maximal Subgroups: 8 11 13
[25]  Order 8    Length 45  Maximal Subgroups: 10 13 14
[24]  Order 8    Length 15  Maximal Subgroups: 9 11 14
[23]  Order 8    Length 15  Maximal Subgroups: 8 12 14
---
[22]  Order 10   Length 36  Maximal Subgroups: 4 7
[21]  Order 9    Length 10  Maximal Subgroups: 5 6
[20]  Order 6    Length 60  Maximal Subgroups: 2 5
[19]  Order 6    Length 60  Maximal Subgroups: 4 6
[18]  Order 6    Length 60  Maximal Subgroups: 3 6
[17]  Order 6    Length 60  Maximal Subgroups: 4 5
[16]  Order 6    Length 20  Maximal Subgroups: 3 6
[15]  Order 6    Length 20  Maximal Subgroups: 2 5
[14]  Order 4    Length 45  Maximal Subgroups: 2 3 4
[13]  Order 4    Length 45  Maximal Subgroups: 4
[12]  Order 4    Length 45  Maximal Subgroups: 3 4
[11]  Order 4    Length 45  Maximal Subgroups: 2 4
[10]  Order 4    Length 45  Maximal Subgroups: 4
*[ 9]  Order 4    Length 15  Maximal Subgroups: 4 
[ 8]  Order 4    Length 15  Maximal Subgroups: 4
---
[ 7]  Order 5    Length 36  Maximal Subgroups: 1
[ 6]  Order 3    Length 20  Maximal Subgroups: 1
[ 5]  Order 3    Length 20  Maximal Subgroups: 1
[ 4]  Order 2    Length 45  Maximal Subgroups: 1
[ 3]  Order 2    Length 15  Maximal Subgroups: 1
[ 2]  Order 2    Length 15  Maximal Subgroups: 1
---





Rank of the G-invariant Picard group (the numbering corresponds to the subgroup lattice):

2. Rank of Pic( M0,6)G where G= C2 is 12
3. Rank of Pic( M0,6)G where G= C2 is 10
4. Rank of Pic( M0,6)G where G= C2 is 10
5. Rank of Pic( M0,6)G where G= C3 is 8
6. Rank of Pic( M0,6)G where G= C3 is 6
7. Rank of Pic( M0,6)G where G= C5 is 4
8. Rank of Pic( M0,6)G where G= C2^2 is 7

9. Rank of Pic( M0,6)G where G= C2^2 is 7
H^1(9.C2^2, dual of Picard( M0,6))=Z/2.

10. Rank of Pic( M0,6)G where G= C4 is 6
11. Rank of Pic( M0,6)G where G= C2^2 is 9
12. Rank of Pic( M0,6)G where G= C2^2 is 7
13. Rank of Pic( M0,6)G where G= C4 is 6
14. Rank of Pic( M0,6)G where G= C2^2 is 8
15. Rank of Pic( M0,6)G where G= S3 is 8
16. Rank of Pic( M0,6)G where G= S3 is 5
17. Rank of Pic( M0,6)G where G= S3 is 6
18. Rank of Pic( M0,6)G where G= C6 is 4
19. Rank of Pic( M0,6)G where G= S3 is 5
20. Rank of Pic( M0,6)G where G= C6 is 6
21. Rank of Pic( M0,6)G where G= C3^2 is 4
22. Rank of Pic( M0,6)G where G= D5 is 4
23. Rank of Pic( M0,6)G where G= C2^3 is 6
24. Rank of Pic( M0,6)G where G= C2^3 is 7
25. Rank of Pic( M0,6)G where G= C2*C4 is 5
26. Rank of Pic( M0,6)G where G= D4 is 6
27. Rank of Pic( M0,6)G where G= D4 is 5
28. Rank of Pic( M0,6)G where G= D4 is 5
29. Rank of Pic( M0,6)G where G= D4 is 6

30. Rank of Pic( M0,6)G where G= A4 is 3
    H^1(30.A4, dual of Picard( M0,6))=Z/2.

31. Rank of Pic( M0,6)G where G= A4 is 5
32. Rank of Pic( M0,6)G where G= D6 is 6
33. Rank of Pic( M0,6)G where G= D6 is 4
34. Rank of Pic( M0,6)G where G= C3:S3 is 4
35. Rank of Pic( M0,6)G where G= C3*S3 is 3
36. Rank of Pic( M0,6)G where G= C3*S3 is 4
37. Rank of Pic( M0,6)G where G= F5 is 3
38. Rank of Pic( M0,6)G where G= C2*D4 is 5
39. Rank of Pic( M0,6)G where G= S4 is 3
40. Rank of Pic( M0,6)G where G= S4 is 5
41. Rank of Pic( M0,6)G where G= C2*A4 is 4
42. Rank of Pic( M0,6)G where G= S4 is 4
43. Rank of Pic( M0,6)G where G= C2*A4 is 3
44. Rank of Pic( M0,6)G where G= S4 is 3
45. Rank of Pic( M0,6)G where G= S3^2 is 4
46. Rank of Pic( M0,6)G where G= S3^2 is 3
47. Rank of Pic( M0,6)G where G= C3:S3.C2 is 3

48. Rank of Pic( M0,6)G where G= A5 is 2
H^1(48.A5, dual of Picard( M0,6))=Z/2.

49. Rank of Pic( M0,6)G where G= A5 is 3
50. Rank of Pic( M0,6)G where G= C2*S4 is 3
51. Rank of Pic( M0,6)G where G= C2*S4 is 4
52. Rank of Pic( M0,6)G where G= S3wrC2 is 3
53. Rank of Pic( M0,6)G where G= S5 is 2
54. Rank of Pic( M0,6)G where G= S5 is 3
55. Rank of Pic( M0,6)G where G= A6 is 2
56. Rank of Pic( M0,6)G where G= S6 is 2