D6link
D6 -link from the Burkhardt quartic X4 to a smooth quadric
The page displays in equations the D6 -link from the Burkhardt quartic X4 to a smooth quadric introduced in the paper.
The source code of all equations and matrices involved can be found here .
Consider the Burkhardt quartic X4 in P4 [y1 :y2 :y3 :y4 :y5 ] given by the equation
y1 4 - y1 *y2 3 - y1 *y3 3 - y1 *y4 3 + 3*y2 *y3 *y4 *y5 - y1 *y5 3 .
Fix the D6 -action on X4 generated by matrices (action from the right)
m1=[1/3, -2/3*z3, 1/3*(2*z3 + 2), -2/3, -2/3,]
[-1/3, -1/3*z3, 1/3*(z3 + 1), -1/3, 2/3,]
[1/3*(z3+1), 2/3, -1/3*z3, 1/3*(z3 + 1), 1/3*(z3 + 1),]
[1/3*(z3+1), -1/3, 2/3*z3, 1/3*(z3 + 1), 1/3*(z3 + 1),]
[1/3*(z3+1), -1/3, -1/3*z3, 1/3*(-2*z3 - 2), 1/3*(z3 + 1)]
z3=the (first) primitive third root of unity
and
m2=[1 0 0 0 0]
[0 0 0 0 1]
[0 0 0 z32 0]
[0 0 z3 0 0]
[0 1 0 0 0]
The linear system
| 4*(−KX4 ) − D8 |
where D8 is the formal sum of eight planes given by equations
plane1: y1 =y5 =0,
plane2: y1 =y2 =0,
plane3: (-z3+1)*y1 +(-2*z3-1)*y5 =z3*y1 -z32 *y2 -y3 -y4 -z32 *y5 =0,
plane4: z3*y1 -y2 -y3 -z3*y4 -y5 =z3*y1 -z32 *y2 -y3 -y4 -z32 *y5 =0,
plane5: z3*y1 -y2 -z3*y3 -y4 -y5 =z3*y1 -z32 *y2 -y3 -y4 -z32 *y5 =0,
plane6: z32 *y1 -z32 *y2 -y3 -y4 -y5 =(z3+2)*y1 +(-z3-2)*y2 =0,
plane7: y1 -y5 =y2 +z3*2 y3 +z3*y4 =0
plane8: z32 *y1 -y2 -z3*y3 -z32 *y4 -z32 *y5 =z3*y1 -z3*y2 -y3 -y4 -y5 =0
has projective dimension 4 and a basis of five polynomials
f1=y1 3 *y2 -y1 *y2 3 +(z3+1)*y1 2 *y3 2 -z3*y1 *y2 *y3 2 +z3*y1 *y3 3 +(-z3-1)*y1 3 *y4 +z3*y1 2 *y2 *y4 +y1 *y2 2 *y4 +(-z3+1)*y1 2 *y3 *y4 -y1 *y2 *y3 *y4 +(z3+1)*y1 *y3 2 *y4 -z3*y1 2 *y4 2 -y1 *y2 *y4 2 +y1 *y3 *y4 2 +1/3*(-z3+1)*y1 3 *y5 -y1 2 *y2 *y5 +(z3+1)*y1 *y2 2 *y5 +1/3*(-2*z3-1)*y2 3 *y5 +1/3*(-z3+4)*y1 2 *y3 *y5 +1/3*(-z3-5)*y1 *y2 *y3 *y5 +1/3*(5*z3+4)*y2 2 *y3 *y5 +1/3*(2*z3+4)*y1 *y3 2 *y5 +1/3*(-2*z3-4)*y2 *y3 2 *y5 +1/3*(-z3-2)*y1 2 *y4 *y5 +1/3*(-z3-2)*y1 *y2 *y4 *y5 +1/3*(2*z3+1)*y2 2 *y4 *y5 +1/3*(-2*z3-1)*y1 *y3 *y4 *y5 +1/3*(-4*z3+1)*y2 *y3 *y4 *y5 +1/3*(-z3-2)*y1 *y4 2 *y5 +1/3*(-2*z3-1)*y2 *y4 2 *y5 +1/3*(-z3-2)*y1 2 *y5 2 +1/3*(5*z3+4)*y1 *y2 *y5 2 +1/3*(-z3-2)*y2 2 *y5 2 +1/3*(-2*z3-1)*y1 *y3 *y5 2 +1/3*(2*z3+1)*y2 *y3 *y5 2 +1/3*(z3-1)*y1 *y4 *y5 2 +1/3*(-z3-2)*y2 *y4 *y5 2 +1/3*(2*z3+1)*y1 *y5 3 +1/3*(z3-1)*y2 *y5 3 ,
f2=y1 2 *y2 2 -y1 *y2 3 +z3*y1 2 *y3 2 -y1 *y3 3 -z3*y1 3 *y4 -y1 2 *y2 *y4 +(z3+1)*y1 *y2 2 *y4 +(z3+1)*y1 2 *y3 *y4 -y1 *y3 2 *y4 +(z3+2)*y1 2 *y4 2 +(-z3-1)*y1 *y2 *y4 2 +z3*y1 *y3 *y4 2 +z3*y1 *y4 3 +1/3*(z3+2)*y1 3 *y5 +(-z3-1)*y1 2 *y2 *y5 +z3*y1 *y2 2 *y5 +1/3*(-z3+1)*y2 3 *y5 +1/3*(4*z3+2)*y1 2 *y3 *y5 +1/3*(-5*z3-4)*y1 *y2 *y3 *y5 +1/3*(z3-1)*y2 2 *y3 *y5 +1/3*(z3-1)*y1 *y3 2 *y5 +1/3*(-z3+1)*y2 *y3 2 *y5 +1/3*(z3+2)*y1 2 *y4 *y5 +1/3*(-5*z3-1)*y1 *y2 *y4 *y5 +1/3*(z3-1)*y2 2 *y4 *y5 +1/3*(2*z3-2)*y1 *y3 *y4 *y5 +1/3*(-5*z3+8)*y2 *y3 *y4 *y5 +1/3*(z3+2)*y1 *y4 2 *y5 +1/3*(-z3+1)*y2 *y4 2 *y5 +1/3*(-2*z3-1)*y1 2 *y5 2 +1/3*(z3-1)*y1 *y2 *y5 2 +1/3*(-2*z3-1)*y2 2 *y5 2 +1/3*(2*z3+1)*y1 *y3 *y5 2 +1/3*(-2*z3-1)*y2 *y3 *y5 2 +1/3*(-z3+1)*y1 *y4 *y5 2 +1/3*(-2*z3-1)*y2 *y4 *y5 2 +1/3*(z3-1)*y1 *y5 3 +1/3*(-z3-2)*y2 *y5 3 ,
f3=y1 3 *y3 +(z3+1)*y1 2 *y3 2 +1/3*(-z3+1)*y1 3 *y4 +1/3*(2*z3+1)*y1 2 *y2 *y4 +1/3*(-z3+1)*y1 *y2 2 *y4 +1/3*(2*z3+4)*y1 2 *y3 *y4 +1/3*(z3-1)*y1 *y2 *y3 *y4 +1/3*(2*z3+1)*y1 *y3 2 *y4 +1/3*(-z3+1)*y1 2 *y4 2 +1/3*(z3-1)*y1 *y2 *y4 2 +1/3*(z3+2)*y1 *y3 *y4 2 +1/3*(-z3+1)*y1 *y4 3 +1/3*(z3+2)*y1 2 *y2 *y5 +1/3*(z3+2)*y1 *y2 2 *y5 +1/3*(-2*z3-1)*y2 3 *y5 +1/3*(z3-1)*y1 *y2 *y3 *y5 +1/3*(2*z3+1)*y2 2 *y3 *y5 +1/3*(-2*z3-1)*y2 *y3 2 *y5 +1/3*(-z3-2)*y1 2 *y4 *y5 +1/3*(-z3-2)*y1 *y2 *y4 *y5 +1/3*(2*z3+1)*y2 2 *y4 *y5 +1/3*(-2*z3-1)*y1 *y3 *y4 *y5 +1/3*(-z3-2)*y2 *y3 *y4 *y5 +1/3*(-2*z3-1)*y1 *y4 2 *y5 +1/3*(-2*z3-1)*y2 *y4 2 *y5 +1/3*(z3-1)*y1 *y2 *y5 2 +1/3*(-z3-2)*y2 2 *y5 2 +1/3*(-z3-2)*y2 *y3 *y5 2 +1/3*(-z3-2)*y1 *y4 *y5 2 +1/3*(-z3-2)*y2 *y4 *y5 2 +1/3*(z3-1)*y2 *y5 3 ,
f4=y1 2 *y2 *y3 +z3*y1 2 *y3 2 +(z3+1)*y1 *y2 *y3 2 -y1 *y3 3 +1/3*(-z3+1)*y1 3 *y4 +1/3*(-z3+1)*y1 2 *y2 *y4 +1/3*(2*z3+1)*y1 *y2 2 *y4 +1/3*(5*z3+4)*y1 2 *y3 *y4 +1/3*(z3+2)*y1 *y2 *y3 *y4 +1/3*(2*z3-2)*y1 *y3 2 *y4 +1/3*(2*z3+4)*y1 2 *y4 2 +1/3*(-2*z3-1)*y1 *y2 *y4 2 +1/3*(4*z3+2)*y1 *y3 *y4 2 +1/3*(2*z3+1)*y1 *y4 3 +(z3+1)*y1 3 *y5 +1/3*(-2*z3-1)*y1 2 *y2 *y5 +1/3*(z3+2)*y1 *y2 2 *y5 +1/3*(-2*z3-1)*y2 3 *y5 +(2*z3+1)*y1 2 *y3 *y5 +1/3*(-5*z3-4)*y1 *y2 *y3 *y5 +1/3*(2*z3-2)*y2 2 *y3 *y5 +z3*y1 *y3 2 *y5 +1/3*(-5*z3-1)*y2 *y3 2 *y5 +1/3*(-z3+1)*y1 2 *y4 *y5 +1/3*(-4*z3-5)*y1 *y2 *y4 *y5 +1/3*(2*z3+1)*y2 2 *y4 *y5 +1/3*(z3+2)*y1 *y3 *y4 *y5 +1/3*(-7*z3+1)*y2 *y3 *y4 *y5 +1/3*(-2*z3+2)*y1 *y4 2 *y5 +1/3*(-2*z3-1)*y2 *y4 2 *y5 -z3*y1 2 *y5 2 +1/3*(z3-4)*y1 *y2 *y5 2 +1/3*(-z3-2)*y2 2 *y5 2 +y1 *y3 *y5 2 +1/3*(-z3-5)*y2 *y3 *y5 2 +1/3*(-4*z3-2)*y1 *y4 *y5 2 +1/3*(-z3-2)*y2 *y4 *y5 2 -y1 *y5 3 +1/3*(z3-1)*y2 *y5 3 ,
f5=y1 *y2 2 *y3 +y1 2 *y3 2 +(z3+1)*y1 *y3 3 +1/3*(2*z3+1)*y1 3 *y4 +1/3*(-z3+1)*y1 2 *y2 *y4 +1/3*(-z3+1)*y1 *y2 2 *y4 +1/3*(-z3+1)*y1 2 *y3 *y4 +1/3*(z3-1)*y1 *y2 *y3 *y4 +1/3*(2*z3+4)*y1 *y3 2 *y4 +1/3*(-z3-2)*y1 2 *y4 2 +1/3*(z3-1)*y1 *y2 *y4 2 +1/3*(-2*z3+2)*y1 *y3 *y4 2 +1/3*(-z3+1)*y1 *y4 3 +y1 3 *y5 +1/3*(z3+2)*y1 2 *y2 *y5 +1/3*(-2*z3-1)*y1 *y2 2 *y5 +1/3*(z3-1)*y2 3 *y5 +y1 2 *y3 *y5 +1/3*(z3-1)*y1 *y2 *y3 *y5 +1/3*(2*z3+1)*y2 2 *y3 *y5 +y1 *y3 2 *y5 +1/3*(-2*z3-4)*y2 *y3 2 *y5 +1/3*(-z3-2)*y1 2 *y4 *y5 +1/3*(5*z3-2)*y1 *y2 *y4 *y5 +1/3*(-z3+1)*y2 2 *y4 *y5 +1/3*(-5*z3-1)*y1 *y3 *y4 *y5 +1/3*(-4*z3-8)*y2 *y3 *y4 *y5 +1/3*(-5*z3-4)*y1 *y4 2 *y5 +1/3*(z3-1)*y2 *y4 2 *y5 +(-z3-1)*y1 2 *y5 2 +1/3*(4*z3+2)*y1 *y2 *y5 2 +1/3*(2*z3+1)*y2 2 *y5 2 +(-2*z3-1)*y1 *y3 *y5 2 +1/3*(5*z3+1)*y2 *y3 *y5 2 +1/3*(-z3-5)*y1 *y4 *y5 2 +1/3*(2*z3+1)*y2 *y4 *y5 2 +z3*y1 *y5 3 +1/3*(z3+2)*y2 *y5 3
The map
X4 ---> P4 ,
[y1 , y2 , y3 , y4 , y5 ] ---> [f1 , f2 , f3 , f4 , f5 ]
is birational onto its image. The image is a quadric cone QC in P4 given by
y1 2 -y1 *y2 +y2 2 +1/3*(2*z3-2)*y1 *y3 +1/3*(-4*z3-2)*y2 *y3 +1/3*(5*z3+4)*y1 *y4 +1/3*(-z3-5)*y2 *y4 +1/3*(-z3-2)*y3 *y4 +1/3*(2*z3+1)*y4 2 +1/3*(-z3+1)*y1 *y5 +1/3*(2*z3+1)*y2 *y5 +1/3*(z3-1)*y3 *y5 +y4 *y5 +1/3*(-2*z3-1)*y5 2
Its inverse rational map
QC ---> X4 ,
[y1 , y2 , y3 , y4 , y5 ] ---> [h1 , h2 , h3 , h4 , h5 ]
is given by
h1=(-2*z3-11)*y1 *y3 2 +(-3*z3+5)*y2 *y3 2 +6*y3 3 +(-5*z3+6)*y1 *y3 *y4 +(2*z3+2)*y2 *y3 *y4 +(-4*z3-9)*y3 2 *y4 +(3*z3+2)*y1 *y4 2 +2*z3*y2 *y4 2 +y3 *y4 2 +(z3+1)*y4 3 +(3*z3-2)*y1 *y3 *y5 -5*z3*y2 *y3 *y5 +(-7*z3-1)*y3 2 *y5 +(-7*z3-1)*y1 *y4 *y5 +(3*z3+1)*y2 *y4 *y5 +(13*z3-4)*y3 *y4 *y5 +(-5*z3+4)*y4 2 *y5 +(-z3-3)*y1 *y5 2 +(z3+1)*y2 *y5 2 +(6*z3+8)*y3 *y5 2 +(-5*z3-6)*y4 *y5 2 +z3*y5 3 ,
h2=(5*z3+6)*y1 *y3 2 +(-2*z3-11)*y2 *y3 2 +(3*z3-8)*y1 *y3 *y4 +(-5*z3+6)*y2 *y3 *y4 +(3*z3+5)*y3 2 *y4 +(-5*z3-2)*y1 *y4 2 +(3*z3+2)*y2 *y4 2 +(-4*z3-7)*y3 *y4 2 -z3*y4 3 +(2*z3+2)*y1 *y3 *y5 +(3*z3-2)*y2 *y3 *y5 +z3*y3 2 *y5 +4*z3*y1 *y4 *y5 +(-7*z3-1)*y2 *y4 *y5 +(-8*z3-4)*y3 *y4 *y5 +(11*z3+3)*y4 2 *y5 +2*y1 *y5 2 +(-z3-3)*y2 *y5 2 +(z3-5)*y3 *y5 2 +10*y4 *y5 2 +(-3*z3-2)*y5 3 ,
h3=(2*z3-3)*y1 *y3 2 +(z3+1)*y2 *y3 2 +6*y3 3 +(-9*z3-2)*y1 *y3 *y4 +(z3+3)*y2 *y3 *y4 +(3*z3-10)*y3 2 *y4 +(4*z3+4)*y1 *y4 2 +(-3*z3-4)*y2 *y4 2 +(-7*z3+2)*y3 *y4 2 +(5*z3+3)*y4 3 +(-z3-10)*y1 *y3 *y5 +(-3*z3+7)*y2 *y3 *y5 +(z3+6)*y3 2 *y5 +(-5*z3+3)*y1 *y4 *y5 +(5*z3-1)*y2 *y4 *y5 +(-2*z3-10)*y3 *y4 *y5 +(-4*z3+3)*y4 2 *y5 -y1 *y5 2 +(-z3+3)*y2 *y5 2 +(-2*z3+1)*y3 *y5 2 +(3*z3-5)*y4 *y5 2 +(3*z3+4)*y5 3 ,
h4=(z3-5)*y1 *y3 2 +(3*z3+8)*y2 *y3 2 +6*y3 3 +z3*y1 *y3 *y4 +(-4*z3-10)*y2 *y3 *y4 +(-4*z3-9)*y3 2 *y4 +(-3*z3-1)*y1 *y4 2 +(-z3+3)*y2 *y4 2 +y3 *y4 2 +(z3+1)*y4 3 +(9*z3+10)*y1 *y3 *y5 +(-2*z3-3)*y2 *y3 *y5 +(-4*z3-4)*y3 2 *y5 +(-z3-7)*y1 *y4 *y5 +(-3*z3-2)*y2 *y4 *y5 +(10*z3-1)*y3 *y4 *y5 +(-2*z3+1)*y4 2 *y5 +(2*z3+3)*y1 *y5 2 +(-2*z3-5)*y2 *y5 2 +(3*z3+2)*y3 *y5 2 +(z3+6)*y4 *y5 2 +(-5*z3-3)*y5 3 ,
h5=(2*z3+3)*y1 *y3 2 +(-5*z3-5)*y2 *y3 2 -6*y3 3 +(3*z3-2)*y1 *y3 *y4 -2*z3*y2 *y3 *y4 +5*y3 2 *y4 +(-2*z3-2)*y1 *y4 2 -y2 *y4 2 +(2*z3-1)*y3 *y4 2 -z3*y4 3 +(2*z3-1)*y1 *y3 *y5 -2*y2 *y3 *y5 +(z3+3)*y3 2 *y5 +z3*y1 *y4 *y5 +(-z3-1)*y2 *y4 *y5 +(-2*z3-1)*y3 *y4 *y5 +2*z3*y4 2 *y5 +(3*z3+2)*y1 *y5 2 -z3*y2 *y5 2 +(-5*z3-2)*y3 *y5 2 +(3*z3+1)*y4 *y5 2 +y5 3
Equivalently, the inverse is given by blow-up of six lines and two conics in QC (Figure 1), given by
line1: L1=y4 -y5 =y3 -y5 =y1 +z3*y2 =0,
line2: L2=2y3 -y4 -y5 =2y2 -y4 +y5 =2y1 -z32 *y4 +z32 *y5 =0,
line3: L3=y4 -z3*y5 =2y3 +z32 *y5 =y1 +z32 *y2 -(z3+2)*y5 =0,
line4: L4=y4 +z32 *y5 =y3 =y1 +z32 *y2 +z3*y5 =0,
line5: L5=y3 +z3*y4 +y5 =y2 -y4 -z32 *y5 =y1 +2*z3*y4 +(z3+2)*y5 =0,
line6: L6=y4 -z3*y5 =y3 -z3*y5 =y1 +z3*y2 =0,
conic1: R=2y3 -z32 *y4 -z3*y5 =2y1 +2*z3*y2 -z32 *y4 +z3*y5 =0 (in QC),
conic2: R'=y3 -y4 =y1 +z32 *y2 +z3*y4 -z3*y5 =0 (in QC).
Figure 1
The corresponding C6 -action generated by m1 is linear on QC, given by the matrix
[-z3-1, 0, 1/3*(z3-1), 1/3*(z3+2), 1/3*(-2*z3-1),]
[1, 0, 1/3*(z3+2), 1/3*(4*z3+2), 1/3*(4*z3+5), ]
[1/3, 1/3*(z3+1), 1/3*(-2*z3+2), 1/3*(-2*z3-1), 1/3*(z3+2), ]
[1/3*(2*z3+2), 1/3*(-z3-3), 1/3*(2*z3-2), 1/3*(2*z3-2), 1/3*(-z3+1), ]
[1/3*(z3+3), 1/3*(3*z3-1), z3+1, 2*z3+1, 1 ]
And the C6 -action on QC fixes a point
[z3-2 : -3*z3-8 : 3*z3+1 : 3*z3+1 : 7]
So the projection from a fixed point gives a linearization of the original C6 -action on X4 .
The corresponding C2 involution generated by m2 is birational on QC, given by the map
ι: QC ---> QC
[y1 , y2 , y3 , y4 , y5 ] ---> [t1 , t2 , t3 , t4 , t5 ]
where
t1=y1 *y3 +1/19*(18*z3+7)*y1 *y4 +1/19*(-6*z3+4)*y1 *y5 +1/19*(-5*z3-3)*y2 *y3 +1/19*(-5*z3-3)*y2 *y4 +1/19*(4*z3-9)*y2 *y5 +1/19*(2*z3-14)*y3 2 +1/19*(2*z3+5)*y3 *y4 +1/19*(11*z3+18)*y3 *y5 +1/19*(3*z3-2)*y4 2 +1/19*(-9*z3+6)*y4 *y5 +1/19*(-9*z3-13)*y5 2 ,
t2=1/19*(3*z3+17)*y1 *y3 +1/19*(6*z3-4)*y1 *y4 +1/19*(-3*z3+2)*y1 *y5 +1/19*(-z3-12)*y2 *y3 +1/19*(-10*z3-6)*y2 *y4 +1/19*(-z3-12)*y2 *y5 +1/19*(4*z3-28)*y3 2 +1/19*(-5*z3+16)*y3 *y4 +z3*y3 *y5 +1/19*(12*z3+11)*y4 2 +1/19*(-18*z3+12)*y4 *y5 +1/19*(-12*z3-11)*y5 2 ,
t3=1/19*(12*z3+11)*y1 *y3 +1/19*(-2*z3-5)*y1 *y4 +1/19*(5*z3+3)*y1 *y5 +1/19*(-z3-12)*y2 *y3 +1/19*(-3*z3+2)*y2 *y4 +1/19*(-2*z3-5)*y2 *y5 +1/19*(8*z3+1)*y3 2 +1/19*(-2*z3-5)*y3 *y4 +1/19*(2*z3+5)*y3 *y5 +1/19*(-3*z3+2)*y4 2 +1/19*(-5*z3-3)*y5 2 ,
t4=1/19*(20*z3+12)*y1 *y3 +1/19*(-9*z3-13)*y1 *y4 +1/19*(4*z3+10)*y1 *y5 +1/19*(-2*z3-5)*y2 *y3 +1/19*(5*z3+3)*y2 *y4 +1/19*(-9*z3-13)*y2 *y5 +1/19*(8*z3+1)*y3 2 +1/19*(-9*z3-13)*y3 *y4 +1/19*(12*z3-8)*y3 *y5 +1/19*(-4*z3+9)*y4 2 +1/19*(6*z3+15)*y4 *y5 +1/19*(-13*z3-4)*y5 2 ,
t5=(z3+1)*y1 *y3 +1/19*(-z3-12)*y1 *y4 +1/19*(-3*z3+2)*y1 *y5 +1/19*(-9*z3-13)*y2 *y3 +1/19*(4*z3+10)*y2 *y4 +1/19*(-z3-12)*y2 *y5 +1/19*(-10*z3+13)*y3 2 +1/19*(23*z3-9)*y3 *y4 +1/19*(10*z3+6)*y3 *y5 +1/19*(-17*z3-14)*y4 2 +1/19*(6*z3+15)*y4 *y5 +1/19*(-12*z3-11)*y5 2 ;
The line in QC
L: y1 +1/3*(z3+2)*y4 +1/3*(-z3+1)*y5 =y2 +1/3*(5*z3+4)*y4 +1/3*(z3+5)*y5 =y3 -2*z3*y4 +(-z3-1)*y5 =0
passes through the C6 -fixed point mentioned above and the vertex of QC. The projection of the line
pr: QC ---> P2
and its composition with the involution pr∘ι define a product map
pr × pr∘ι : QC ---> P2 [x0 :x1 :x2 ] × P2 [z0 :z1 :z2 ]
This is a birational map onto its image, a divisor of degree (1,1) given by
x0 *z0 -1/2*x0 *z1 +1/3*(z3-1)*x0 *z2 -1/2*x1 *z0 -1/2*x1 *z1 +1/6*(5*z3+4)*x1 *z2 +1/3*(z3-1)*x2 *z0 +1/6*(5*z3+4)*x2 *z1 +1/6*(-2*z3+5)*x2 *z2
The D6 acts biregularly on P2 × P2 , with C6 acting via two matrices on each factor
[-z3-1, 0, 0, ] [1, 0, 0, ]
[z3+2, 3*z3+1, 3, ] × [-2 -2*z3-1, -3, ]
[ 1/3*(-z3+2), 1/3*(2*z3+6), -2*z3 - 1] [5/3*z3, 1/3*(-2*z3-6), 3*z3+1 ]
and C2 acting as switching two factors of P2 . Moreover, the D6 action leaves invariant the subscheme
3*x1 -(3*z3 +2)*x2 =3*z1 -(3*z3 +2)*z2 =0
In its comeplement, the divisor of degree (1,1) in P2 × P2 is an affine quadric. Therefore it is D6 -equivariant birational to a smooth quadric in P4 , given by the birational map
P2 × P2 ---> P4 [y1 :y2 :y3 :y4 :y5 ]
[x0 *(3*z1 -(3*z3 +2)*z2 ) : x1 *(3*z1 -(3*z3 +2)*z2 ) : z0 *(3*x1 -(3*z3 +2)*x2 ) : z1 *(3*x1 -(3*z3 +2)*x2 ) : (3*x1 -(3*z3 +2)*x2 )*(3*z1 -(3*z3 +2)*z2 )]
The image is a smooth quadric Q given by
y1 *y3 +1/14*(10*z6-9)*y2 *y3 +1/14*(10*z6-9)*y1 *y4 +1/98*(-43*z6+10)*y2 *y4 +1/21*(-5*z6+1)*y1 *y5 +1/294*(29*z6+32)*y2 *y5 +1/21*(-5*z6+1)*y3 *y5 +1/294*(29*z6+32)*y4 *y5 +1/294*(-5*z6-41)*y5 2
z6 = the (first) primitive 6-th root of unity
The D6 -action on Q is given by matrices
[-z6, 0, 0, 0, 0,]
[1/7*(-z6+10), z6, 0, 0, 0,]
[0, 0, z6-1, 0, 0,]
[0, 0, 1/7*(-9*z6-1), -z6+1, 0,]
[1/21*(8*z6-3), 1/3*(2*z6-2), 1/21*(-5*z6+15), 2/3*z6, -1]
[0, 0, 1, 0, 0,]
[0, 0, 0, 1, 0,]
[1, 0, 0, 0, 0,]
[0, 1, 0, 0, 0,]
[0, 0, 0, 0, 1 ]
A change of variable shows the D6 -action on X4 we started with is equivariant birational to a smooth quadric
y1 *y4 - y2 *y3 + y5 2
with the D6 -action generated by
[-z6+1, 0, 0, 0, 0,]
[0, z6-1, 0, 0, 0,]
[0, 0, -z6, 0, 0,]
[0, 0, 0, z6, 0,]
[0, 0, 0, 0, -1]
[0, 0, 0, 1, 0,]
[0, 0, 1, 0, 0,]
[0, 1, 0, 0, 0,]
[1, 0, 0, 0, 0,]
[0, 0, 0, 0, 1 ]