Class group of the Segre Cubic

Class group of the Segre Cubic


This page displays a subgroup lattice of S6, and the corresponding list of G-invariant Class groups of the Segre cubic X3.

Here is the source code.



Partially ordered set of subgroup classes of S6
-----------------------------------------

[56]  Order 720  Length 1               Maximal Subgroups: 50 51 52 53 54 55
---
[55]  Order 360  Length 1               Maximal Subgroups: 39 41 47 48 49
---
[54]  Order 120  Length 6   Nonsolvable Maximal Subgroups: 32 37 42 49
[53]  Order 120  Length 6   Nonsolvable Maximal Subgroups: 33 37 44 48
[52]  Order 72   Length 10              Maximal Subgroups: 27 45 46 47
[51]  Order 48   Length 15              Maximal Subgroups: 32 38 40 41 42
[50]  Order 48   Length 15              Maximal Subgroups: 33 38 39 43 44
---
[49]  Order 60   Length 6               Maximal Subgroups: 18 22 31
[48]  Order 60   Length 6               Maximal Subgroups: 17 22 30
[47]  Order 36   Length 10              Maximal Subgroups: 11 34
[46]  Order 36   Length 10              Maximal Subgroups: 32 34 35
[45]  Order 36   Length 10              Maximal Subgroups: 33 34 36
[44]  Order 24   Length 15              Maximal Subgroups: 16 28 30
[43]  Order 24   Length 15              Maximal Subgroups: 19 24 30
[42]  Order 24   Length 15              Maximal Subgroups: 15 29 31
[41]  Order 24   Length 15              Maximal Subgroups: 18 26 31
[40]  Order 24   Length 15              Maximal Subgroups: 20 23 31
[39]  Order 24   Length 15              Maximal Subgroups: 17 26 30
[38]  Order 16   Length 45              Maximal Subgroups: 23 24 25 26 27 28 29
---
[37]  Order 20   Length 36              Maximal Subgroups: 13 22
[36]  Order 18   Length 20              Maximal Subgroups: 16 19 21
[35]  Order 18   Length 20              Maximal Subgroups: 15 20 21
[34]  Order 18   Length 10              Maximal Subgroups: 17 18 21
[33]  Order 12   Length 60              Maximal Subgroups: 14 16 17 19
[32]  Order 12   Length 60              Maximal Subgroups: 12 15 18 20
[31]  Order 12   Length 15              Maximal Subgroups: 5 8
[30]  Order 12   Length 15              Maximal Subgroups: 6 9
[29]  Order 8    Length 45              Maximal Subgroups: 8 12 13
[28]  Order 8    Length 45              Maximal Subgroups: 9 13 14
[27]  Order 8    Length 45              Maximal Subgroups: 11 12 14
[26]  Order 8    Length 45              Maximal Subgroups: 8 9 11
[25]  Order 8    Length 45              Maximal Subgroups: 10 11 13
[24]  Order 8    Length 15              Maximal Subgroups: 9 10 12
[23]  Order 8    Length 15              Maximal Subgroups: 8 10 14
---
[22]  Order 10   Length 36              Maximal Subgroups: 4 7
[21]  Order 9    Length 10              Maximal Subgroups: 5 6
[20]  Order 6    Length 60              Maximal Subgroups: 2 5
[19]  Order 6    Length 60              Maximal Subgroups: 3 6
[18]  Order 6    Length 60              Maximal Subgroups: 4 5
[17]  Order 6    Length 60              Maximal Subgroups: 4 6
[16]  Order 6    Length 20              Maximal Subgroups: 3 6
[15]  Order 6    Length 20              Maximal Subgroups: 2 5
[14]  Order 4    Length 45              Maximal Subgroups: 3 4
[13]  Order 4    Length 45              Maximal Subgroups: 4
[12]  Order 4    Length 45              Maximal Subgroups: 2 4
[11]  Order 4    Length 45              Maximal Subgroups: 4
[10]  Order 4    Length 45              Maximal Subgroups: 2 3 4
[ 9]  Order 4    Length 15              Maximal Subgroups: 4
[ 8]  Order 4    Length 15              Maximal Subgroups: 4
---
[ 7]  Order 5    Length 36              Maximal Subgroups: 1
[ 6]  Order 3    Length 20              Maximal Subgroups: 1
[ 5]  Order 3    Length 20              Maximal Subgroups: 1
[ 4]  Order 2    Length 45              Maximal Subgroups: 1
[ 3]  Order 2    Length 15              Maximal Subgroups: 1
[ 2]  Order 2    Length 15              Maximal Subgroups: 1


Rank of the G-invariant class group (the numbering corresponds to the subgroup lattice):

2. Rank of Cl(X3)G where G= C2 is 5
3. Rank of Cl(X3)G where G= C2 is 3
4. Rank of Cl(X3)G where G= C2 is 4
5. Rank of Cl(X3)G where G= C3 is 4
6. Rank of Cl(X3)G where G= C3 is 2
7. Rank of Cl(X3)G where G= C5 is 2
8. Rank of Cl(X3)G where G= C2^2 is 3
9. Rank of Cl(X3)G where G= C2^2 is 3
10. Rank of Cl(X3)G where G= C2^2 is 3
11. Rank of Cl(X3)G where G= C4 is 2
12. Rank of Cl(X3)G where G= C2^2 is 4
13. Rank of Cl(X3)G where G= C4 is 3
14. Rank of Cl(X3)G where G= C2^2 is 2
15. Rank of Cl(X3)G where G= S3 is 4
16. Rank of Cl(X3)G where G= S3 is 1
17. Rank of Cl(X3)G where G= S3 is 2
18. Rank of Cl(X3)G where G= S3 is 3
19. Rank of Cl(X3)G where G= C6 is 1
20. Rank of Cl(X3)G where G= C6 is 3
21. Rank of Cl(X3)G where G= C3^2 is 2
22. Rank of Cl(X3)G where G= D5 is 2
23. Rank of Cl(X3)G where G= C2^3 is 2
24. Rank of Cl(X3)G where G= C2^3 is 3
25. Rank of Cl(X3)G where G= C2*C4 is 2
26. Rank of Cl(X3)G where G= D4 is 2
27. Rank of Cl(X3)G where G= D4 is 2
28. Rank of Cl(X3)G where G= D4 is 2
29. Rank of Cl(X3)G where G= D4 is 3
30. Rank of Cl(X3)G where G= A4 is 1
31. Rank of Cl(X3)G where G= A4 is 3
32. Rank of Cl(X3)G where G= D6 is 3
33. Rank of Cl(X3)G where G= D6 is 1
34. Rank of Cl(X3)G where G= C3:S3 is 2
35. Rank of Cl(X3)G where G= C3*S3 is 2
36. Rank of Cl(X3)G where G= C3*S3 is 1
37. Rank of Cl(X3)G where G= F5 is 2
38. Rank of Cl(X3)G where G= C2*D4 is 2
39. Rank of Cl(X3)G where G= S4 is 1
40. Rank of Cl(X3)G where G= C2*A4 is 2
41. Rank of Cl(X3)G where G= S4 is 2
42. Rank of Cl(X3)G where G= S4 is 3
43. Rank of Cl(X3)G where G= C2*A4 is 1
44. Rank of Cl(X3)G where G= S4 is 1
45. Rank of Cl(X3)G where G= S3^2 is 1
46. Rank of Cl(X3)G where G= S3^2 is 2
47. Rank of Cl(X3)G where G= C3:S3.C2 is 1
48. Rank of Cl(X3)G where G= A5 is 1
49. Rank of Cl(X3)G where G= A5 is 2
50. Rank of Cl(X3)G where G= C2*S4 is 1
51. Rank of Cl(X3)G where G= C2*S4 is 2
52. Rank of Cl(X3)G where G= S3wrC2 is 1
53. Rank of Cl(X3)G where G= S5 is 1
54. Rank of Cl(X3)G where G= S5 is 2
55. Rank of Cl(X3)G where G= A6 is 1
56. Rank of Cl(X3)G where G= S6 is 1