COMPUTING THE EQUIVARIANT BRAUER GROUP

ALENA PIRUTKA AND ZHIJIA ZHANG

ABSTRACT. Let X be a smooth projective rational variety carrying a regular action of a finite abelian group G . We give examples of effective computation of the Brauer group of the quotient stack $[X/G]$ in dimensions 2 and 3 using residues in Galois cohomology and the geometry of fixed loci. In particular, we compute $Br([X/G])$ for all G-minimal del Pezzo surfaces.

1. Introduction

Let k be a field of characteristic 0. Consider a smooth projective rational variety X over an algebraic closure k of k carrying a regular and generically free action of a finite group G . Studying such actions up to equivariant birationality is a classical and active area in birational geometry. Of particular interest is the linearizability problem, which asks whether or not the G-action on X is *linearizable*, i.e., equivariantly birational to a linear G-action on \mathbb{P}^n . An arithmetic counterpart of this problem is the classical rationality problem over nonclosed fields k , where the Galois action is considered as an analogue of the G-action.

An established strategy to study both linearizability and rationality problems is to seek nontrivial birational invariants. The similarities between the two problems are well reflected in the following invariant: the group cohomology

(1.1)
$$
H^1(H, Pic(X_{\bar{k}})), \quad H \subseteq G.
$$

This invariant was first studied by Yu. Manin [\[13\]](#page-39-0) in the arithmetic setting, where $G = \text{Gal}(k/k)$ is the Galois group and the action is induced from the Galois action on k. F. Bogomolov and Y. Prokhorov $[4]$ extended it to the equivariant setting, when G is a finite group and the action comes from geometric automorphisms of $X_{\bar{k}}$. In the respective cases, the vanishing of [\(1.1\)](#page-0-0) for every subgroup H of G is a necessary condition for X to be stably rational over k, and for the G-action on $X_{\bar{k}}$ to be stably linearizable. Applications of this invariant to the study of the linearizability problem can be found in $[6, 8]$ $[6, 8]$.

Date: October 7, 2024.

In the arithmetic setting, when k is a nonclosed field, the Leray spectral sequence for the Galois action gives rise to a well-known long exact sequence

$$
(1.2) \quad 0 \to Pic(X) \to Pic(X_{\bar{k}})^{\operatorname{Gal}(\bar{k}/k)} \to Br(k) \to
$$

$$
\to \ker(\operatorname{Br}(X) \to Br(X_{\bar{k}})) \to H^1(\operatorname{Gal}(\bar{k}/k), Pic(X_{\bar{k}})) \to H^3(\operatorname{Gal}(\bar{k}/k), \bar{k}^\times),
$$

where $Br(k)$ and $Br(X)$ are the Brauer group of k and X respectively. The group ker($Br(X) \to Br(X_{\bar{k}})$) is known as the *algebraic part* of the Brauer group.

In the equivariant setting, when $k = \overline{k}$, the Leray spectral sequence for the G-action produces an exact sequence similar to [\(1.2\)](#page-1-0)

$$
(1.3) \quad 0 \to \text{Hom}(G, k^{\times}) \to \text{Pic}(X, G) \to \text{Pic}(X)^G \to \text{H}^2(G, k^{\times}) \to
$$

$$
\to \text{Br}([X/G]) \to \text{H}^1(G, \text{Pic}(X)) \to \text{H}^3(G, k^{\times}),
$$

where $Pic(X, G)$ is the group of G-linearizable line bundles on X and $Br([X/G])$ is the Brauer group of the quotient stack $[X/G]$. The group $Br([X/G])$ is a Gstably birational invariant, and can be viewed as an analogue of the algebraic part of the Brauer group as in [\(1.2\)](#page-1-0).

From now on, we focus on the equivariant setting with $k = k$, and study the groups $Br([X/G])$ and $H^1(G, Pic(X))$. Given a G-action on X, it can be computationally challenging to find the induced G -action on $Pic(X)$, as this requires a thorough analysis of divisors on X . On the other hand, the geometry of the fixed locus X^G contains rich information readily available in the equivariant setting, but absent in the arithmetic setting (where the Galois fixed locus simply consists of all k -rational points).

When G is a cyclic group acting on a smooth rational surface X with maximal stabilizers, the works of F. Bogomolov and Y. Prokhorov, and E. Shinder [\[4,](#page-38-0) [14\]](#page-39-1) give a formula for $H^1(G, Pic(X))$ only involving information about the G-fixed curves on X. Generalizing this, for any finite group G acting on a smooth projective variety X , A. Kresch and Y. Tschinkel gave an algorithm to compute $Br([X/G])$ which only requires information about divisors with nontrivial stabilizers, and presented examples of effective computations when X is a rational surface [\[11,](#page-39-2) [12\]](#page-39-3).

In this note, we extend the scope of applications of this algorithm to dimension 3. In particular, we produce a nontrivial class in $Br([X/G])$ for a smooth model \tilde{X} of a singular cubic threefold X , and showcase the connection between $Br([\tilde{X}/G])$ and $\text{H}^1(G,\text{Pic}(\tilde{X}))$ through this example (see Remark [3.2\)](#page-10-0). We also complete the computations of $Br([X/G])$ in dimension 2 for all G-minimal del Pezzo surfaces X and finite abelian groups G .

Here is a road map of the paper. In Section [2,](#page-2-0) we review basic facts about the Brauer group of the quotient stack. In Section [3,](#page-5-0) we produce an example with nontrivial $Br([X/G])$ in dimension 3. We compute $Br([X/G])$ in dimension 2 in Section [4.](#page-11-0)

Acknowledgements. We would like to thank Yuri Tschinkel for many helpful discussions, and Andrew Kresch for comments on the manuscript. The first author was partially supported by NSF grant DMS-2201195.

2. Preliminaries

2.1. **Brauer groups.** Let X be a smooth projective variety over a field k and n a positive integer invertible in k. Let $H^i(k(X), \mu_n)$ be the Galois cohomology of the function field of X with μ_n -coefficients, where μ_n is the étale k-group scheme of the nth-roots of unity (in particular, $\mu_n \simeq \mathbb{Z}/n\mathbb{Z}$ when k is algebraically closed).

If v is a discrete valuation on the field $k(X)$, one has the residue maps

$$
\partial_v^i : \mathrm{H}^i(k(X), \mu_n^{\otimes j}) \to \mathrm{H}^{i-1}(\kappa(v), \mu_n^{\otimes (j-1)}),
$$

where $\kappa(v)$ is the residue field. In particular, for $a \in H^1(k(X), \mathbb{Z}/2\mathbb{Z})$ and for $(a, b) \in \mathrm{H}^2(k(X), \mathbb{Z}/2\mathbb{Z})$, one has

(2.1)
$$
\partial_v^1(a) = v(a) \mod 2 \in \mathbb{Z}/2\mathbb{Z},
$$

$$
\partial_v^2(a, b) = (-1)^{v(a)v(b)} \overline{a^{v(b)}b^{-v(a)}} \in \kappa(v)^\times / (\kappa(v)^\times)^2,
$$

where for a unit u in the valuation ring of v, we denote by \bar{u} its image in the residue field $\kappa(v)$.

For an irreducible divisor D on X, we denote by v_D the associated divisorial valuation on $k(X)$, ∂_D^i the corresponding residue maps, and $\kappa(v_D)$ or $\kappa(D)$ the residue field. Similarly, for $\xi \in X^{(1)}$ a codimension 1 point of X, we denote by v_{ξ} and ∂_{ξ}^{i} the associated valuation and residue maps. The *n*-torsion in the Brauer group of X can be computed via

(2.2)
$$
Br(X)[n] = \bigcap_{D} \ker(\partial_{D}^{2}),
$$

where D runs over all irreducible divisors on X (see $[5,$ Proposition 4.2.3] and $[5,$ Theorem 4.1.1]; note that we assume that X is smooth and projective).

Now let k be an algebraically closed field of characteristic zero and X a smooth projective variety over k carrying a generically free regular action of a finite group G. An analogue of the classical formula [\(2.2\)](#page-2-1) for $Br([X/G])$, the Brauer group of the quotient stack $[X/G]$, is established in [\[11,](#page-39-2) [12\]](#page-39-3):

Proposition 2.1. Let k be an algebraically closed field of characteristic zero and X a smooth projective variety over k carrying a generically free regular action of a finite group G . For any irreducible divisor D on X , we denote by I_D the stabilizer group

$$
I_D := \{ g \in G \mid g \text{ acts trivially on } D \}.
$$

Then the n-torsion subgroup of $Br([X/G])$, denoted by $Br([X/G])[n]$, can be computed via

(2.3)
$$
Br([X/G])[n] = \bigcap_{D} \ker (|I_D| \cdot \partial_{D'}^2) \subset H^2(k(X)^G, \mathbb{Z}/n\mathbb{Z}),
$$

where D runs over all irreducible divisors on X, $|I_D|$ is the order of I_D , and $\partial_{D'}^2$ is the residue map in degree 2 corresponding to the divisorial valuation on $k(X)^G$ given by the image D' of D.

Proof. See [\[11,](#page-39-2) Proposition 4.2], [\[12,](#page-39-3) Section 4], and [\[10,](#page-38-4) Proposition 2.2]. \Box

2.2. Rational surfaces. In this subsection, we review an effective algorithm provided in [\[11\]](#page-39-2) to compute $Br([X/G])$ when X is a rational surface.

Let X be a smooth projective rational surface carrying a generically free regular action of a finite group G . Recall that the G -action on X is called in standard form if there exists a G-invariant simple normal crossing divisor $\mathcal{D} \subset X$ such that

- the G-action on $X \setminus \mathcal{D}$ is free, and
- for any $g \in G$ and any irreducible component D of D, either $g(D) = D$ or $q(D) \cap D = \emptyset$.

Any G -action on X can be brought into standard form via successive blowups [\[15,](#page-39-4) Theorem 3.2]. The following proposition provides an effective algorithm only involving divisors with nontrivial stabilizers to determine $Br([X/G])$.

Proposition 2.2 (11, Proposition 4.2, Corollary 4.6)). Let X be a smooth projective rational surface carrying a finite group G-action in standard form. Then the group $Br([X/G])[n]$ can be identified with the kernel of the map

(2.4)
$$
\bigoplus_{[\xi]\in X^{(1)}/G} H^1(\operatorname{Spec}(k(\xi)^{D_{\xi}}), \mathbb{Z}/n\mathbb{Z}) \xrightarrow{\oplus \partial^1} \bigoplus_{[\mathfrak{p}]\in X/G} \mathbb{Z}/n\mathbb{Z},
$$

where the sum on the left runs over G-orbit representatives $|\xi|$ of codimension 1 points on X such that the stabilizer group I_{ξ} has cardinality n,

$$
D_{\xi} := \{ g \in G \mid \xi \cdot g = \xi \},
$$

Using Proposition [2.2,](#page-3-0) we compute $Br([X/G])$ for all G-minimal del Pezzo surfaces with abelian groups G in Section [4.](#page-11-0) Here we introduce the notation and demonstrate the process in detail with a concrete example.

Example 2.3. We consider the case $3.36 \mid \text{in} \left[1 \right]$. Let X be a smooth cubic surface given by

$$
\{w^3+x^3+xy^2+z^3=0\}\subset \mathbb{P}^3_{w,x,y,z},
$$

with an action of $G = C_3 \times C_6$ generated by

$$
\sigma: (w, x, y, z) \mapsto (\zeta_3 w, x, y, z),
$$

$$
\tau: (w, x, y, z) \mapsto (w, x, -y, \zeta_3 z).
$$

We list the stratification of curves with nontrivial stabilizers

where

- the second column displays equations of the curves ξ_i with nontrivial generic stabilizers;
- the third column displays the stabilizers I_{ξ_i} of ξ_i ;
- the fourth column displays the groups $D_{\xi_i} = \{ g \in G \mid \xi_i \cdot g = \xi_i \};$
- the fifth column displays the genera of ξ_i ;
- the sixth column displays the genera of ξ_i/D_{ξ_i} , computed via the Riemann-Hurwitz formula.

One can check that the G -action on X is in standard form: the G -action is free in the complement of the simple normal crossing divisor $\xi_1 \cup \xi_2 \cup \xi_3$ in X, and G leaves invariant each of the curves ξ_i for $i = 1, 2, 3$. By Proposition [2.2,](#page-3-0) we know that $Br([X/G])[n]$ is possibly nonzero only when $n=2$ or 3.

For $n = 3$, observe that $\xi_2 \cap \xi_3$ consists of three points where two of them are in the same G-orbit. It follows that the quotient curves ξ_2/G and ξ_3/G are both rational and meet at two points, denoted by p_1 and p_2 . The kernel of [\(2.4\)](#page-3-1) consists of classes of functions ramified only at p_1 and p_2 , where the ramification indices are distinct at two points. It follows that

$$
Br([X/G])[3] = \mathbb{Z}/3.
$$

For $n = 2$, the quotient curve ξ_1/G has genus 0. Then

$$
\ker\left(\mathrm{H}^1(\mathrm{Spec}(k(\xi_1))^G,\mathbb{Z}/2\mathbb{Z})\to\bigoplus_{[\mathfrak{p}]\in X/G}\mathbb{Z}/2\mathbb{Z}\right)=0
$$

(see $[5,$ Proposition 4.2.1(b)]). Combining the 2-torsion and 3-torsion subgroups, we conclude that

$$
Br([X/G]) = \mathbb{Z}/3\mathbb{Z}.
$$

3. A cubic threefold

Let k be an algebraically closed field of characteristic zero, and X the cubic threefold given by

$$
X = \{F = 0\} \subset \mathbb{P}^4_{y_1,\ldots,y_5},
$$

where

$$
F = y_3^2(y_1 - y_4) + y_5^2(y_1 + y_2) - 2y_1y_3y_5 + f,
$$

\n
$$
f = -y_1^2y_2 - y_1y_2^2 + y_1^2y_4 - y_1y_4^2 + y_2^2y_4 - y_2y_4^2 - 2y_1y_2y_4.
$$

Let $G = C_2$ act on X by

$$
(y_1, y_2, y_3, y_4, y_5) \mapsto (y_1, y_2, -y_3, y_4, -y_5).
$$

The singular locus of X consists of six ordinary double points:

$$
p_1 = [0:0:0:1:-1],
$$
 $p_2 = [0:0:0:1:1],$ $p_3 = [1:0:-1:0:-1],$

 $p_4 = [1:0:1:0:1], \quad p_5 = [0:1:-1:0:0], \quad p_6 = [0:1:1:0:0].$

Let \tilde{X} be the blowup of X at p_1, \ldots, p_6 and the G-invariant curve given by

$$
\{y_3 = y_5 = 0\} \cap X.
$$

Since p_1, \ldots, p_6 are ordinary double points, \tilde{X} is smooth.

Proposition 3.1. In the above notation, the group $\text{Br}([\tilde{X}/G])$ is nonzero. More precisely, the class

$$
\alpha = \left(\frac{f}{(y_2 - y_4)^3}, \frac{-y_1y_4 + y_1y_2 - y_2y_4}{(y_2 - y_4)^2}\right) \in \mathrm{H}^2(k(X)^G, \mathbb{Z}/2\mathbb{Z})
$$

is nontrivial, and belongs to $Br([\tilde{X}/G])$. In particular, the G-action on X is not linearizable.

The rest of this section is devoted to the proof of Proposition [3.1.](#page-5-1) First, let

$$
q = -y_1y_4 + y_1y_2 - y_2y_4
$$

and

(3.1)
$$
\alpha = (a, b) \in \mathrm{H}^2(k(X)^G, \mathbb{Z}/2\mathbb{Z}),
$$

where

$$
a := \frac{f}{(y_2 - y_4)^3}, \quad b := \frac{q}{(y_2 - y_4)^2}.
$$

Since \tilde{X} is smooth and projective, by Proposition [2.1,](#page-3-2) it suffices to check that for all divisorial valuations on $k(X)^G$ given by the image D' of a divisor D on \tilde{X} , we have

(3.2)
$$
|I_D| \cdot \partial^2_{D'}(\alpha) = 0.
$$

Note that no singular point of X lies on the plane section of X given by $y_3 = y_5 = 0$. In particular, we may blow up the singular points and the curve ${y_3 = y_5 = 0} \cap X$ independently.

Blowup of $y_3 = y_5 = 0$. The blowup Y of X along the cubic curve

$$
\{y_3 = y_5 = 0\} \cap X
$$

is given by

$$
Y = \{F = y_3z_5 - y_5z_3 = 0\} \subset \mathbb{P}^4_{y_1,\dots,y_5} \times \mathbb{P}^1_{z_3,z_5}.
$$

We first compute residues in the affine chart U of Y given by $y_4 = z_3 = 1$. Put

$$
g = y_1 - y_4 + y_1 z_5^2 + y_2 z_5^2 - 2y_1 z_5.
$$

Then $y_5 = y_3z_5$ and the equation of U is

$$
U: y_3^2 \bar{g} + \bar{f} = 0,
$$

where \bar{g} (resp. \bar{f}) is the affine equation of g (resp. f) in the chart $y_4 = 1$. The action of G on U is

$$
(y_1, y_2, y_3, z_5) \mapsto (y_1, y_2, -y_3, z_5).
$$

Then U/G is the affine rational variety

(3.3)
$$
U/G \subset \mathbb{A}^4_{y_1, y_2, w_3, z_5}, \quad w_3\bar{g} + \bar{f} = 0.
$$

In $k(U)^G$, one has $\bar{f} = -w_3\bar{g}$, and we rewrite

$$
\alpha = \left(\frac{-w_3\bar{g}}{(y_2-1)^3}, \frac{-y_1+y_1y_2-y_2}{(y_2-1)^2}\right) \in \mathrm{H}^2(k(U)^G, \mathbb{Z}/2) = \mathrm{H}^2(k(X)^G, \mathbb{Z}/2).
$$

We then compute residues of α at divisors of $U/G \simeq \mathbb{A}^3_{y_1,y_2,z_5}$. From the definition of α , we know that $\partial_{D'}(\alpha) = 0$ for any divisor D' of U/G except possibly when D' is one of the following four divisors:

$$
D'_1: w_3 = 0
$$
, $D'_2: \bar{g} = 0$, $D'_3: y_2 - 1 = 0$, $D'_4: -y_1 + y_1y_2 - y_2 = 0$.

We consider these four cases:

(1) D'_1 is the image of the divisor $D_1 : y_3 = 0$ on U, with $|I_{D_1}| = 2$. Hence condition (3.2) is satisfied for D_1 . We claim that

(3.4)
$$
\partial_{D'_1}(\alpha) = q = -y_1 + y_1y_2 - y_2 \neq 0 \text{ in } \kappa(D'_1)^{\times}/(\kappa(D'_1)^{\times})^2.
$$

Indeed, at the generic point of D'_1 , the function \bar{g} is invertible. Hence $\kappa(D'_1)$ is the field of functions of the subscheme

$$
\{\bar{f}=0\}\subset \mathbb{A}^3_{y_1,y_2,z_5},
$$

which is a purely transcendental extension of the function field of the cubic curve

$$
C: \bar{f} = -y_1^2 y_2 - y_1 y_2^2 + y_1^2 - y_1 + y_2^2 - y_2 - 2y_1 y_2 = 0 \subset \mathbb{A}^2_{y_1, y_2}.
$$

Since the function $y_2 - 1$ is invertible at the generic point of C, we may write:

$$
\bar{f}(y_1, y_2) = \bar{f}\left(\frac{q+y_2}{y_2-1}, y_2\right) = \frac{y_2^2(-q-5) - 4qy_2 - q^2 - q}{y_2-1}.
$$

The discriminant of

$$
y_2^2(-q-5) - 4qy_2 - q^2 - q
$$

as a quadratic polynomial in the variable y_2 over $k(q)$ is

$$
d = q(-4q^2 - 8q - 20)
$$

with $-4q^2 - 8q - 20$ being a nonsquare in $k(q)$. We obtain:

$$
\kappa(D_1) = k(q)(\sqrt{d})(z_5).
$$

Hence the kernel of the natural map

$$
k(q)^{\times}/(k(q)^{\times})^2 \to \kappa(D'_1)^{\times}/(\kappa(D'_1)^{\times})^2
$$

is generated by d, so that q is a nonzero element in $\kappa(D'_1)^{\times}/(\kappa(D'_1)^{\times})^2$. (2) $\partial_{D_2'}(\alpha)$ is the image of $-y_1 + y_1y_2 - y_2$ in $\kappa(D_2')^{\times}/(\kappa(D_2')^{\times})^2$. By the definition of D'_2 , we have a relation

$$
y_1 - 1 + y_1 z_5^2 + y_2 z_5^2 - 2y_1 z_5 = 0
$$

in $\kappa(D'_2)$, where we still write y_1, y_2, z_5 for their images in $\kappa(D'_2)^{\times}$. We rewrite this condition as:

$$
(y_1 + y_2)(z_5 - \frac{y_1}{y_1 + y_2})^2 + \frac{-y_1 + y_1y_2 - y_2}{y_1 + y_2} = 0,
$$

so that

$$
-y_1 + y_1 y_2 - y_2 = -(y_1 + y_2)^2 (z_5 - \frac{y_1}{y_1 + y_2})^2
$$

is a square in $\kappa(D'_2)^\times$ and $\partial_{D'_2}(\alpha) = 0$.

- (3) $\partial_{D'_3}(\alpha) = (-y_1 + y_1y_2 y_2)^3|_{y_2=1} = -1$ is a square in $\kappa(D'_3)^{\times}$. So we have that $\partial_{D'_3}(\alpha) = 0$.
- (4) $\partial_{D'_4}(\alpha)$ is the image of $\frac{\bar{f}}{(y_2-1)^3}$ in $\kappa(D'_4)^{\times}/(\kappa(D'_4)^{\times})^2$. In the field $\kappa(D'_4)$, we have a relation

.

$$
y_1 = \frac{y_2}{y_2 - 1}
$$

Then we find that in $\kappa(D_4')$,

$$
\frac{\bar{f}}{(y_2-1)^3} = -\frac{5y_2^2}{(y_2-1)^4}
$$

is a square, hence $\partial_{D'_4}(\alpha) = 0$.

The computations in the remaining charts $y_1 = z_3 = 1$, $y_2 = z_3 = 1$, and $y_i = z_5 = 1, i = 1, 2, 4$ of Y are similar. Hence we have verified that the condition [\(3.2\)](#page-6-0) holds for all divisors on X/G except the images of the exceptional divisors of the blowups of six singular points.

Exceptional divisors of $\text{Bl}_{p_1,p_2}(X)$. Let v be the valuation on $k(X)^G$ corresponding to the exceptional divisor of the blowup of X at the G -orbit of two singular points p_1 and p_2 . We work with the affine chart $y_4 = 1$. Put

$$
g_1 = y_1
$$
, $g_2 = y_2$, $g_3 = y_3$, $g_4 = y_5^2 - 1$,

one may view the union of p_1 and p_2 as a variety given by

$$
\{g_1 = g_2 = g_3 = g_4 = 0\} \subset \mathbb{A}^4_{y_1, y_2, y_3, y_5}.
$$

The blowup $\text{Bl}_{p_1,p_2}(\mathbb{A}^4)$ is given by

$$
\{g_i z_j - g_j z_i = 0 \mid i, j = 1, \dots, 4\} \subset \mathbb{A}^4_{y_1, y_2, y_3, y_5} \times \mathbb{P}^3_{z_1, z_2, z_3, z_4}.
$$

The induced G-action is given by

$$
(y_1, y_2, y_3, y_5) \times (z_1, z_2, z_3, z_4) \mapsto (y_1, y_2, -y_3, -y_5) \times (z_1, z_2, -z_3, z_4).
$$

In the affine chart $z_4 = 1$, the defining equations are equivalent to the change of variables

(3.5)
$$
y_i = z_i(y_5^2 - 1), \quad i = 1, 2, 3.
$$

The exceptional divisor E is given by $y_5^2 = 1$. Note that it consists of two components in the same G -orbit. So it gives rise to a divisorial valuation v of $k(X)^G$. Since $a, b \in k(X)^G$, after substituting [\(3.5\)](#page-9-0) into [\(3.1\)](#page-6-1), one can compute

(3.6)
$$
v\left(\frac{f}{(y_2 - y_4)^3}\right) = v\left(\frac{q}{(y_2 - y_4)^2}\right) = 1.
$$

From (2.1) , one has

$$
\partial_v(\alpha) = \frac{f}{q(z_2(y_5^2 - 1) - 1)} = -1 \in \kappa(v)^\times / (\kappa(v)^\times)^2
$$

where the second equality is obtained via evaluation at $y_5^2 = 1$. It follows from (3.6) that $\partial_v(a) = 0$.

The computations of the residue of α along exceptional divisors of blowups of the other two G-orbits of singular points are similar. We summarize them below.

Exceptional divisors of $\text{Bl}_{p_3,p_4}(X)$. Let v be the valuation on $k(X)^G$ corresponding to the exceptional divisors of $\text{Bl}_{p_3,p_4}(X)$. Similarly as [\(3.5\)](#page-9-0), after choosing an appropriate affine chart and introducing new coordinates z_2, z_3, z_4 , the blowup of \mathbb{P}^4 at p_3 and p_4 can be considered as the change of variables

$$
y_1 = 1,
$$

\n $y_2 = z_2(y_3^2 - 1),$
\n $y_3 = -z_3(y_3^2 - 1) + y_3.$
\n $y_4 = z_4(y_3^2 - 1),$
\n $y_5 = -z_3(y_3^2 - 1) + y_3.$

Plugging this into [\(3.1\)](#page-6-1), one can compute

$$
v\left(\frac{f}{(y_2 - y_4)^3}\right) = -2
$$
, $v\left(\frac{q}{(y_2 - y_4)^2}\right) = -1$.

It follows from [\(3.1\)](#page-6-1) that

$$
\partial_v(\alpha) = -(z_2 - z_4)^2
$$

is trivial in $\kappa(v)^{\times}/(\kappa(v)^{\times})^2$.

Exceptional divisors of $\text{Bl}_{p_5,p_6}(X)$. Let v be the valuation on $k(X)^G$ corresponding to the exceptional divisors of $\text{Bl}_{p_5,p_6}(X)$. Similarly as before, after choosing an appropriate affine chart and introducing new coordinates z_1, z_4, z_5 , the blowup of \mathbb{P}^4 at p_5 and p_6 can be considered as the change of variables

$$
y_2 = 1,
$$
 $y_i = z_i(y_3^2 - 1), i = 1, 4, 5.$

Plugging this into [\(3.1\)](#page-6-1), one can compute

$$
v\left(\frac{f}{(y_2 - y_4)^3}\right) = v\left(\frac{q}{(y_2 - y_4)^2}\right) = 1.
$$

Then $\partial_{v}(\alpha)$ is obtained by evaluating

$$
\frac{f}{q(1 - z_4(y_3^2 - 1))}
$$

at $y^3 - 1 = 0$. After the above change of variables, this gives $\partial_v(\alpha) = -1$, and thus we know $\partial_v(\alpha) = 0$.

In summary, condition [\(3.2\)](#page-6-0) is satisfied for all divisors on \ddot{X}/G , hence α defines an element of $Br([X/G])$. Moreover, it is nonzero since its residue at $w_3 = 0$ is nonzero by [\(3.4\)](#page-7-0). Since G is a cyclic group, one has

$$
H^2(G, k^{\times}) = H^3(G, k^{\times}) = 0.
$$

The sequence [\(1.3\)](#page-1-1) implies that

(3.7)
$$
H^1(G, Pic(\tilde{X})) = Br([\tilde{X}/G])
$$

so that the G -action on X is not (stably) linearizable.

Remark 3.2. For the G-action on X given in Proposition [3.1,](#page-5-1) it is also computed in [\[6\]](#page-38-1) that

(3.8)
$$
H^{1}(G, Pic(\hat{X})) = H^{1}(G, Cl(X)) = \mathbb{Z}/2\mathbb{Z}
$$

where \hat{X} is the blowup of X at p_1, \ldots, p_6 . In particular, the divisor class group $Cl(X)$ of X is generated by the class F of a general hyperplane section on X and two classes of rational normal cubic scrolls S_1 and S_2 in X subject to the relation $S_1 + S_2 = 2F$. The G-action switches S_1 and S_2 , contributing to nontrivial cohomology [\(3.8\)](#page-10-1).

Our computation above illustrates how to find nontrivial elements in the group $Br([X/G])$ via residues in Galois cohomology, without using information of $Pic(X)$ as in [\[6\]](#page-38-1) or the group-theoretic formulas as in [\[12\]](#page-39-3).

On the other hand, our computation reflects a striking similarity with the computation in [\[6\]](#page-38-1), making the equality [\(3.7\)](#page-10-2) explicit. Indeed, with the nota-tion in Proposition [3.1,](#page-5-1) the factor $q = -y_1y_4 + y_1y_2 - y_2y_4$ in α is a quadric section (equivalent to $2F$ in $Cl(X)$) cutting out two cubic scrolls on X:

$$
X \cap \{q = 0\} = R_1 + R_2,
$$

where

$$
R_1 = \{q = y_2y_5 + y_1(\sqrt{5}y_2 - y_3 + y_5) = y_3y_4 - y_1(y_3 - \sqrt{5}y_4 - y_5) = 0\},
$$

\n
$$
R_2 = \{q = y_2y_5 - y_1(\sqrt{5}y_2 + y_3 - y_5) = y_3y_4 - y_1(y_3 + \sqrt{5}y_4 - y_5) = 0\}.
$$

One sees that R_1 and R_2 are two rational normal cubic scrolls, corresponding to the two classes S_1 and S_2 in Cl(X) which contribute to [\(3.8\)](#page-10-1).

4. Rational surfaces

Throughout this section, we work over $k = \mathbb{C}$. Let $Cr_2(\mathbb{C})$ be the plane Cremona group, i.e., the group of birational automorphisms over $\mathbb C$ of $\mathbb P^2$. Finite abelian subgroups of $Cr_2(\mathbb{C})$ have been classified in [\[1\]](#page-38-5). We recall the basic settings. Let $G \subset \operatorname{Cr}_2(\mathbb{C})$ be a finite group. It is known that we can find a smooth projective surface X with a regular $G\text{-}minimal$ action on X inducing the embedding $G \subset Cr_2(\mathbb{C})$. Here a G-minimal action means one of the following two cases holds

- (1) $Pic(X)^G = \mathbb{Z}$ and X is a del Pezzo surface;
- (2) $Pic(X)^G = \mathbb{Z}^2$ and X is a G-conic bundle.

In the remainder of this section, we compute $Br([X/G])$ in case (1), i.e., for G-minimal del Pezzo surfaces X using Proposition [2.2.](#page-3-0) We focus on the cases when G is a finite abelian group, and rely on a classification of such models, in particular the lists of groups and regular actions in [\[1,](#page-38-5) Chapter 10]. We omit technical details of the computation and refer readers to Example [2.3](#page-4-0) for an illustration of the computation process. We keep the labels and notation as in loc. cit. In particular,

- $L_d(x_1, \ldots, x_n)$ denotes a general homogeneous form of degree d in variables x_1, \ldots, x_n ;
- ζ_n is a primitive *n*-th root of unity;
- λ, μ are general complex numbers.

4.1. Cyclic groups. Note that for an action of a cyclic group G on a smooth projective variety X, we have $H^2(G, \mathbb{C}^\times) = 0$. Then (1.3) implies that

$$
Br([X/G]) = H1(G, Pic(X)).
$$

Let $G \subset Cr_2(\mathbb{C})$ be a cyclic group generated by an element σ of order n. By [\[1,](#page-38-5) Chapter 10.1], we know that up to conjugation in $Cr_2(\mathbb{C})$, the embedding $G \subset Cr_2(\mathbb{C})$ is induced by a G-action on X in one of the following cases:

• Linear automorphisms.

 $\overline{0 \text{ n}}$ $X = \mathbb{P}^2$ and σ acts via weights $(1, 1, \zeta_n)$. One has $Br([X/G]) = 0$ in these cases.

• Involutions. There are three types of involutions (elements of order 2) in $Cr_2(\mathbb{C})$, up to conjugation. They are:

 $\boxed{C.2}$ de Jonquières involutions: X is a conic bundle and the fixed locus is a hyperelliptic curve of genus $g > 0$. The model is in standard form. We have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^{2g}
$$

 $(see [4]).$ $(see [4]).$ $(see [4]).$ $2.G$ *Geiser involutions*: The model is given by

$$
X = \{w^2 = L_4(x, y, z)\} \subset \mathbb{P}(2, 1, 1, 1)_{w, x, y, z},
$$

\n
$$
G = \langle \sigma \rangle = C_2, \quad \sigma \colon (w, x, y, z) \mapsto (-w, x, y, z).
$$

The fixed curves stratification is given by

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_2 = \langle \sigma \rangle & G & 3 & 3 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^6.
$$

 $|1.B|$ *Bertini involutions:* The model is given by

$$
X = \{w^2 = z^3 + L_2(x, y)z^2 + L_4(x, y)z + L_6(x, y)\} \subset \mathbb{P}(3, 1, 1, 2)_{w, x, y, z},
$$

$$
G = \langle \sigma \rangle = C_2, \quad \sigma \colon (w, x, y, z) \mapsto (-w, x, y, z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_2 = \langle \sigma \rangle & G & 4 & 4 & \text{yes} \end{array}
$$

We have

$$
\mathrm{Br}([X/G])=({\mathbb Z}/2{\mathbb Z})^8.
$$

• Roots of de Jonquières Involutions.

C.ro.m | and | C.re.m | X is a conic bundle, σ^m is a de Jonquières involution for some integer m and $n = 2m$. The only stratum with nontrivial stabilizer is a hyperelliptic curve ξ of genus g fixed by σ^m . The model $X \subset G$ is in standard form and $Br([X/G])$ has been computed in [\[11,](#page-39-2) Section 5]. The genus of the quotient curve ξ/G depends on the number s of fixed points of σ on ξ . Note that s can be 0, 2 or 4. Let $r = \frac{2g+2}{m}$ $\frac{g+2}{m}$, we have

$$
Br([X/G]) = \begin{cases} (\mathbb{Z}/2\mathbb{Z})^{r-2} & \text{if } s = 4, \\ (\mathbb{Z}/2\mathbb{Z})^{r-1} & \text{if } s = 2, \\ (\mathbb{Z}/2\mathbb{Z})^r & \text{if } s = 0. \end{cases}
$$

 \bullet n=3. 3.3 The model is given by

$$
X = \{w^3 = L_3(x, y, z)\} \subset \mathbb{P}^3_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_3, \quad \sigma \colon (w, x, y, z) \mapsto (\zeta_3 w, x, y, z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_3 = \langle \sigma \rangle & G & 1 & 1 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/3\mathbb{Z})^2.
$$

 $1.\rho$ The model is given by

$$
X = \{w^2 = z^3 + L_6(x, y, z)\} \subset \mathbb{P}(3, 1, 1, 2)_{w, x, y, z},
$$

\n
$$
G = \langle \sigma \rangle = C_3, \quad \sigma \colon (w, x, y, z) \mapsto (w, x, y, \zeta_3 z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{z = 0\} & C_3 = \langle \sigma \rangle & G & 2 & 2 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/3\mathbb{Z})^4.
$$

 \bullet n=4. 2.4 The model is given by

$$
X = \{w^2 = L_4(x, y) + z^4\} \subset \mathbb{P}(2, 1, 1, 1)_{w, x, y, z},
$$

$$
G = \langle \sigma \rangle = C_4, \quad \sigma \colon (w, x, y, z) \mapsto (w, x, y, \zeta_4 z).
$$

$$
\begin{array}{c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{z = 0\} & C_4 = \langle \sigma \rangle & G & 1 & 1 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/4\mathbb{Z})^2.
$$

1.B2.2 The model is given by

$$
X = \{w^2 = z^3 + zL_2(x^2, y^2) + xyL'_2(x^2, y^2)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_4, \quad \sigma \colon (w, x, y, z) \mapsto (\zeta_4 w, x, -y, -z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_2 = \langle \sigma^2 \rangle & G & 4 & 2 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^4.
$$

 \bullet n=5. 1.5 The model is given by

$$
X = \{w^2 = z^3 + \lambda x^4 z + x(\mu x^5 + y^5)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_5, \quad \sigma \colon (w, x, y, z) \mapsto (w, x, \zeta_5 y, z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{y = 0\} & C_5 = \langle \sigma \rangle & G & 1 & 1 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/5\mathbb{Z})^2.
$$

 \bullet n=6.

3.6.1 The model is given by

$$
X = \{w^3 + x^3 + y^3 + xz^2 + \lambda yz^2 = 0\} \subset \mathbb{P}^3_{w,x,y,z},
$$

\n
$$
G = \langle \sigma \rangle = C_6, \quad \sigma \colon (w, x, y, z) \mapsto (\zeta_3 w, x, y, -z).
$$

The fixed curves stratification is

We have

16

$$
Br([X/G]) = 0.
$$

3.6.2 The model is given by

$$
X = \{wx^2 + w^3 + y^3 + z^3 + \lambda wyz = 0\} \subset \mathbb{P}^3_{w,x,y,z},
$$

\n
$$
G = \langle \sigma \rangle = C_6, \quad \sigma \colon (w, x, y, z) \mapsto (w, -x, \zeta_3 y, \zeta_3^2 z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{x = 0\} & C_2 = \langle \sigma^3 \rangle & G & 1 & 1 & \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^2.
$$

2.G3.1 The model is given by

$$
X = \{w^2 = L_4(x, y) + z^3 L_1(x, y)\} \subset \mathbb{P}(2, 1, 1, 1)_{w, x, y, z},
$$

$$
G = \langle \sigma \rangle = C_6, \quad \sigma : (w, x, y, z) \mapsto (-w, x, y, \zeta_3 z).
$$

The fixed curves stratification is

We have

$$
Br([X/G]) = 0.
$$

 $\sqrt{2 \cdot G3 \cdot 2}$ The model is given by

$$
X = \{w^2 = x(x^3 + y^3 + z^3) + yzL_1(x^2, yz)\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma \rangle = C_6, \quad \sigma \colon (w, x, y, z) \mapsto (-w, x, \zeta_3 y, \zeta_3^2 z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_2 = \langle \sigma^3 \rangle & G & 3 & 1 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^2.
$$

2.6 The model is given by

$$
X = \{w^2 = x^3y + y^4 + z^4 + \lambda y^2 z^2\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_6, \quad \sigma \colon (w, x, y, z) \mapsto (-w, \zeta_3 x, y, -z).
$$

$$
\begin{array}{c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{x = 0\} & C_3 = \langle \sigma^2 \rangle & G & 1 & 1 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/3\mathbb{Z})^2.
$$

 $\boxed{1.\sigma\rho}$ The model is given by

$$
X = \{w^2 = z^3 + L_6(x, y)\} \subset \mathbb{P}(3, 1, 1, 2)_{w, x, y, z},
$$

\n
$$
G = \langle \sigma \rangle = C_6, \quad \sigma \colon (w, x, y, z) \mapsto (-w, x, y, \zeta_3 z).
$$

The fixed curves stratification is

We have

$$
Br([X/G]) = 0.
$$

 $\boxed{1.\rho2}$ The model is given by

$$
X = \{w^2 = z^3 + L_3(x^2, y^2)\} \subset \mathbb{P}(3, 1, 1, 2)_{w, x, y, z},
$$

$$
G = \langle \sigma \rangle = C_6, \quad \sigma \colon (w, x, y, z) \mapsto (w, x, -y, \zeta_3 z).
$$

The fixed curves stratification is

We have

$$
Br([X/G]) = 0.
$$

1.B3.1 The model is given by

$$
X = \{w^2 = z^3 + xL_1(x^3, y^3)z + L_2(x^3, y^3)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_6, \quad \sigma \colon (w, x, y, z) \mapsto (-w, x, \zeta_3 y, z).
$$

The fixed curves stratification is

We have

$$
Br([X/G]) = 0.
$$

1.B3.2 The model is given by

$$
X = \{w^2 = z^3 + \lambda x^2 y^2 z + L_2(x^3, y^3)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_6, \quad \sigma \colon (w, x, y, z) \mapsto (-w, x, \zeta_3 y, \zeta_3 z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_2 = \langle \sigma^3 \rangle & G & 4 & 2 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^4.
$$

1.6 The model is given by

$$
X = \{w^2 = z^3 + \lambda x^4 z + \mu x^6 + y^6\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_6, \quad \sigma \colon (w, x, y, z) \mapsto (w, x, -\zeta_3 y, z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_6 = \langle \sigma \rangle & G & 1 & 1 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/6\mathbb{Z})^2.
$$

 \bullet n=8.

1.B4.2 The model is given by

$$
X = \{w^2 = \lambda x^2 y^2 z + xy(x^4 + y^4)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_8, \quad \sigma \colon (w, x, y, z) \mapsto (\zeta_8 w, x, \zeta_4 y, -\zeta_4 z).
$$

The fixed curves stratification is

The model is not in standard form: the divisor $\{w=0\} \cap X$ fixed by σ^4 is the union of three rational curves ξ_1, ξ_2 and ξ_3 meeting at one point $p = [0 :$ $0:0:1$, and thus not normal crossing. Moreover, p is a node of ξ_3 . To reach a standard form, consider the blowup of X at p . Let E_1 be the exceptional

divisor and $\tilde{\xi}_i$ be the strict transform of ξ_i for $i = 1, 2, 3$. We find $\tilde{\xi}_3$ meets E_1 at two points p_1 and p_2 , $\tilde{\xi}_1 \cap \tilde{\xi}_3 \cap E_1 = \{p_1\}$, $\tilde{\xi}_2 \cap \tilde{\xi}_3 \cap E_1 = \{p_2\}$ and $\tilde{\xi}_1$ and $\tilde{\xi}_2$ are disjoint. Then blowing up the points p_1 and p_2 brings the model into a standard form. One then computes via Proposition [2.2](#page-3-0) that

$$
Br([X/G]) = \mathbb{Z}/2\mathbb{Z}.
$$

 \bullet n=9.

3.9 The model is given by

$$
X = \{w^3 + xz^2 + x^2y + y^2z = 0\} \subset \mathbb{P}^3_{w,x,y,z},
$$

\n
$$
G = \langle \sigma \rangle = C_9, \quad \sigma \colon (w, x, y, z) \mapsto (\zeta_9 w, x, \zeta_3 y, \zeta_3^2 z).
$$

The fixed curves stratification is given by

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curve } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_3 = \langle \sigma^3 \rangle & G & 1 & 0 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = 0.
$$

 \bullet n=10.

1.B5 The model is given by

$$
X = \{w^2 = z^3 + \lambda x^4 z + x(\mu x^5 + y^5)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_{10}, \quad \sigma \colon (w, x, y, z) \mapsto (-w, x, \zeta_5 y, z).
$$

The fixed curves stratification is given by

We have

$$
Br([X/G]) = 0.
$$

 \bullet n=12.

3.12 The model is given by

$$
X = \{w^3 + x^3 + yz^2 + y^2x = 0\} \subset \mathbb{P}^3_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_{12}, \quad \sigma \colon (w, x, y, z) \mapsto (\zeta_3 w, x, -y, \zeta_4 z).
$$

The fixed curves stratification is given by

We have

$$
Br([X/G]) = 0.
$$

2.12 The model is given by

$$
X = \{w^2 = x^3y + y^4 + z^4\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_{12}, \quad \sigma \colon (w, x, y, z) \mapsto (w, \zeta_3 x, y, \zeta_4 z).
$$

The fixed curves stratification is given by

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{z=0\} & C_2 = \langle \sigma^6 \rangle & G & 1 & 0 & \text{yes} \\ \hline 2 & \{x=0\} & C_3 = \langle \sigma^4 \rangle & G & 1 & 0 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = 0.
$$

 $(1.\sigma\overline{\rho2.2})$ The model is given by

$$
X = \{w^2 = z^3 + xyL_2(x^2, y^2)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

$$
G = \langle \sigma \rangle = C_{12}, \quad \sigma \colon (w, x, y, z) \mapsto (\zeta_4 w, x, -y, -\zeta_3 z).
$$

The fixed curves stratification is given by

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_2 = \langle \sigma^6 \rangle & G & 4 & 0 & \text{yes} \\ \hline 2 & \{z = 0\} & C_3 = \langle \sigma^4 \rangle & G & 2 & 0 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = 0.
$$

• $n=14$.

2.G7 The model is given by

$$
X = \{w^2 = x^3y + y^3z + xz^3\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma \rangle = C_{14}, \quad \sigma \colon (w, x, y, z) \mapsto (-w, \zeta_7 x, \zeta_7^4 y, \zeta_7^2 z).
$$

The fixed curves stratification is given by

$$
\begin{array}{c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_2 = \langle \sigma^7 \rangle & G & 3 & 0 & \text{yes} \\ \text{have} & & & & \end{array}
$$

We h

$$
Br([X/G]) = 0.
$$

 \bullet n=15.

 $\overline{1.\rho 5}$ The model is given by

$$
X = \{w^2 = z^3 + x(x^5 + y^5)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma \rangle = C_{15}, \quad \sigma \colon (w, x, y, z) \mapsto (w, x, \zeta_5 y, \zeta_3 z).
$$

The fixed curves stratification is given by

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{z = 0\} & C_3 = \langle \sigma^5 \rangle & G & 2 & 0 \\ \hline 2 & \{y = 0\} & C_5 = \langle \sigma^3 \rangle & G & 1 & 0 \end{array}
$$

We have

$$
Br([X/G]) = 0.
$$

 \bullet n=18.

 $\boxed{2.G9}$ The model is given by

$$
X = \{w^2 = x^3y + y^4 + xz^3\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma \rangle = C_{18}, \quad \sigma \colon (w, x, y, z) \mapsto (-w, \zeta_9^6 x, y, \zeta_9 z).
$$

The fixed curves stratification is given by

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_2 = \langle \sigma^9 \rangle & G & 3 & 0 & \text{yes} \\ 2 & \{z = 0\} & C_3 = \langle \sigma^6 \rangle & G & 1 & 0 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = 0.
$$

• $n=20$.

1.B10 The model is given by

$$
X = \{w^2 = z^3 + x^4z + xy^5\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma \rangle = C_{20}, \quad \sigma \colon (w, x, y, z) \mapsto (\zeta_4 w, x, \zeta_{10} y, -z).
$$

The fixed curves stratification is given by

The model is not in standard form. The curve ξ_1 has an A_4 -singularity at $p = [0:1:0:0]$, and ξ_1 intersects ξ_2 at p non-transversally. One can obtain a standard form via successive blowups such that the strict transforms of ξ_1 and ξ_2 and the exceptional divisors form a tree of rational curves. We have

$$
Br([X/G]) = 0.
$$

• $n=24$.

 $\overline{1.\sigma \rho 4}$ The model is given by

$$
X = \{w^2 = z^3 + xy(x^4 + y^4)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma \rangle = C_{24}, \quad \sigma \colon (w, x, y, z) \mapsto (\zeta_8 w, x, \zeta_4 y, -\zeta_{12}^7 z).
$$

The fixed curves stratification is given by

We have

$$
Br([X/G]) = 0.
$$

• $n=30$.

 $1.\sigma \rho 5$ The model is given by

$$
X = \{w^2 = z^3 + x(x^5 + y^5)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma \rangle = C_{30}, \quad \sigma \colon (w, x, y, z) \mapsto (-w, x, \zeta_5 y, \zeta_3 z).
$$

The fixed curves stratification is given by

We have

 $Br([X/G]) = 0.$

4.2. Noncyclic groups. We continue with actions of noncyclic groups.

\bullet Automorphisms of $\mathbb{P}^1 \times \mathbb{P}^1$

Let $X = \mathbb{P}^1 \times \mathbb{P}^1$. Note that $H^1(G, Pic(X)) = 0$ for any $G \subset Aut(X)$ and thus

$$
Br([X/G]) = H^2(G, \mathbb{C}^{\times})/\text{Am}(X, G),
$$

where $\text{Am}(X, G)$ is the Amitsur group of the G-action on X. The computation of $\text{Am}(X, G)$ in this case is straightforward, see e.g., [\[3,](#page-38-6) Proposition 6.7]. So for actions on quadric surfaces, we compute $Br([X/G])$ from the Amitsur groups.

 $\overline{0 \text{mm}}$ The action on $X = \mathbb{P}^1 \times \mathbb{P}^1$ is given by

$$
G = C_n \times C_m, \qquad (x, y) \stackrel{\sigma_1}{\mapsto} (\zeta_n x, y), \quad (x, y) \stackrel{\sigma_2}{\mapsto} (x, \zeta_m y).
$$

One has Pic $(X)^G = \mathbb{Z}^2$, generated by the G-invariant line bundles $\mathcal{O}(1,0)$ and $\mathcal{O}(0, 1)$. Both $\mathcal{O}(1, 0)$ and $\mathcal{O}(0, 1)$ are G-linearizable. It follows that $\text{Am}(X, G) = 0$ and

$$
Br([X/G]) = H^2(G, \mathbb{C}^\times) = \mathbb{Z}/\text{gcd}(n, m)\mathbb{Z}.
$$

We also compute the fixed curves stratification in this case

Using Proposition [2.2,](#page-3-0) one can also deduce $Br([X/G]) = \mathbb{Z}/\text{gcd}(n,m)\mathbb{Z}$.

 $\overline{P1.22n}$ The action on $X = \mathbb{P}^1 \times \mathbb{P}^1$ is given by

 $G = C_2 \times C_{2n}$, $(x, y) \mapsto (x^{-1}, y)$, $(x, y) \mapsto (-x, \zeta_{2n}y)$.

One has $Pic(X)^G = \mathbb{Z}^2$, generated by $\mathcal{O}(1,0)$ and $\mathcal{O}(0,1)$. The line bundle $\mathcal{O}(1,0)$ is not G-linearizable while $\mathcal{O}(0,1)$ is. It follows that $\text{Am}(X, G) = \mathbb{Z}/2\mathbb{Z}$ and

$$
Br([X/G]) = 0.
$$

 $\overline{P1.222n}$ The action on $X = \mathbb{P}^1 \times \mathbb{P}^1$ is given by

 $G = C_2^2 \times C_{2n}$, $(x, y) \mapsto (\pm x^{\pm 1}, y)$, $(x, y) \mapsto (x, \zeta_{2n}y)$.

One has $Pic(X)^G = \mathbb{Z}^2$, generated by $\mathcal{O}(1,0)$ and $\mathcal{O}(0,1)$. The line bundle $\mathcal{O}(1,0)$ is not G-linearizable while $\mathcal{O}(0,1)$ is. It follows that $\text{Am}(X, G) = \mathbb{Z}/2\mathbb{Z}$ and

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^2.
$$

 $\overline{P1.22.1}$ The action on $X = \mathbb{P}^1 \times \mathbb{P}^1$ is given by

$$
G = C_2^2
$$
, $(x, y) \mapsto (\pm x^{\pm 1}, y)$.

One has $Pic(X)^G = \mathbb{Z}^2$, generated by $\mathcal{O}(1,0)$ and $\mathcal{O}(0,1)$. The line bundle $\mathcal{O}(1,0)$ is not G-linearizable while $\mathcal{O}(0,1)$ is. It follows that $\text{Am}(X, G) = \mathbb{Z}/2\mathbb{Z}$ and

$$
Br([X/G]) = 0.
$$

P1.222 The action on $X = \mathbb{P}^1 \times \mathbb{P}^1$ is given by

$$
G = C_2^3
$$
, $(x, y) \mapsto (\pm x, \pm y)$, $(x, y) \mapsto (x^{-1}, y)$.

One has $Pic(X)^G = \mathbb{Z}^2$, generated by $\mathcal{O}(1,0)$ and $\mathcal{O}(0,1)$. The line bundle $\mathcal{O}(1,0)$ is not G-linearizable while $\mathcal{O}(0,1)$ is. It follows that $\text{Am}(X, G) = \mathbb{Z}/2\mathbb{Z}$ and

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^2.
$$

 $\overline{P1.2222}$ The action on $X = \mathbb{P}^1 \times \mathbb{P}^1$ is given by

$$
G = C_2^4
$$
, $(x, y) \mapsto (\pm x^{\pm 1}, \pm y^{\pm 1})$.

One has $Pic(X)^G = \mathbb{Z}^2$, generated by $\mathcal{O}(1,0)$ and $\mathcal{O}(0,1)$. Both $\mathcal{O}(1,0)$ and $\mathcal{O}(0, 1)$ are not G-linearizable. It follows that $\text{Am}(X, G) = (\mathbb{Z}/2\mathbb{Z})^2$ and

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^4.
$$

P1s.24 The action on $X = \mathbb{P}^1 \times \mathbb{P}^1$ is given by

$$
G = C_2 \times C_4, \qquad (x, y) \mapsto (x^{-1}, y^{-1}), \qquad (x, y) \mapsto (-y, x).
$$

One has Pic $(X)^G = \mathbb{Z}$, generated by $\mathcal{O}(1,1)$, which is not G-linearizable. It follows that $\text{Am}(X, G) = \mathbb{Z}/2\mathbb{Z}$ and

$$
Br([X/G]) = 0.
$$

P1s.222 The action on $X = \mathbb{P}^1 \times \mathbb{P}^1$ is given by $G = C_2^3,$ $(x, y) \mapsto (-x, -y),$ $(x, y) \mapsto (x^{-1}, y^{-1}),$ $(x, y) \mapsto (y, x).$

One has $Pic(X)^G = \mathbb{Z}$, generated by $\mathcal{O}(1,1)$, which is G-linearizable. It follows that $\text{Am}(X, G) = 0$ and

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^3.
$$

• Automorphisms of \mathbb{P}^2

 $\overline{0. V9}$ The action on $X = \mathbb{P}^2$ is given by

$$
G = C_3^2, \qquad (x : y : z) \mapsto (x : \zeta_3 y : \zeta_3^2 z), \quad (x : y : z) \mapsto (y : z : x).
$$

One has Pic $(X)^G = \mathbb{Z}$, generated by $\mathcal{O}(1)$, which is not G-linearizable. It follows that $\text{Am}(X, G) = \mathbb{Z}/3\mathbb{Z}$ and

$$
Br([X/G]) = 0.
$$

• Automorphisms of del Pezzo surfaces of degree 4

The surface $X \subset \mathbb{P}^4_{x_1,\dots,x_5}$ is given by the following equations with general $a, b, c \in \mathbb{C}$

(4.1)
$$
cx_1^2 - ax_3^2 - (a - c)x_4^2 - ac(a - c)x_5^2 = 0
$$

$$
cx_2^2 - bx_3^2 + (c - b)x_4^2 - bc(c - b)x_5^2 = 0.
$$

4.222 The action on X is given by

$$
G = C_2^3, \qquad \sigma_1 : (\mathbf{x}) \mapsto (-x_1, x_2, x_3, x_4, x_5),
$$

 $\sigma_2 : (\mathbf{x}) \mapsto (x_1, -x_2, x_3, x_4, x_5), \quad \sigma_3 : (\mathbf{x}) \mapsto (x_1, x_2, -x_3, x_4, x_5).$

The fixed curves stratification is

The images of ξ_i and ξ_j in $X^{(1)}/G$ intersect in 2 points for $i \neq j \in \{1,2,3\}.$ We find

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^4.
$$

 4.2222 The action on X is given by

$$
G = C_2^4, \quad \sigma_1 : (\mathbf{x}) \mapsto (-x_1, x_2, x_3, x_4, x_5), \quad \sigma_2 : (\mathbf{x}) \mapsto (x_1, -x_2, x_3, x_4, x_5),
$$

$$
\sigma_3 : (\mathbf{x}) \mapsto (x_1, x_2, -x_3, x_4, x_5), \quad \sigma_4 : (\mathbf{x}) \mapsto (x_1, x_2, x_3, -x_4, x_5).
$$

The images of ξ_i and ξ_j in $X^{(1)}/G$ intersect in 1 point for $i \neq j \in \{1, \ldots, 5\}$. We find

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^6.
$$

4.42 The surface X is given by [\(4.1\)](#page-24-0) with $(a:b:c) = (1:\xi:1+\xi)$ for any $\overline{\xi \in \mathbb{C}} \setminus \{0, \pm 1\}.$ The $G = C_4 \times C_2$ -action on X is generated by

$$
\sigma_1: (\mathbf{x}) \mapsto (-x_2, x_1, x_4, x_3, -x_5), \qquad \sigma_2: (\mathbf{x}) \mapsto (x_1, x_2, x_3, x_4, -x_5).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{x_5 = 0\} & C_2 = \langle \sigma_2 \rangle & G & 1 & 1 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/2)^2.
$$

• Automorphisms of cubic surfaces

3.33.1 The model is given by

$$
X = \{w^3 + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^3_{w,x,y,z}, \quad G = \langle \sigma_1, \sigma_2 \rangle = C_3^2,
$$

$$
\sigma_1 : (w, x, y, z) \mapsto (\zeta_3 w, x, y, z), \quad \sigma_2 : (w, x, y, z) \mapsto (w, x, y, \zeta_3 z).
$$

The group

$$
Br([X/G]) = (\mathbb{Z}/3\mathbb{Z})^2
$$

has been computed in [\[11,](#page-39-2) Section 5].

3.33.2 The model is given by

$$
X = \{w^3 + x^3 + y^3 + z^3 + \lambda xyz = 0\} \subset \mathbb{P}^3_{w,x,y,z}, \quad G = \langle \sigma_1, \sigma_2 \rangle = C_3^2,
$$

$$
\sigma_1 : (w, x, y, z) \mapsto (\zeta_3 w, x, y, z), \quad \sigma_2 : (w, x, y, z) \mapsto (w, x, \zeta_3 y, \zeta_3^2 z).
$$

The fixed curves stratification is given by

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_3 = \langle \sigma_1 \rangle & G & 1 & 1 & \text{yes} \end{array}
$$

and

$$
Br([X/G]) = (\mathbb{Z}/3\mathbb{Z})^2.
$$

3.36 The model is given by

$$
X = \{w^3 + x^3 + xy^2 + z^3 = 0\} \subset \mathbb{P}^3_{w,x,y,z}, \quad G = \langle \sigma_1, \sigma_2 \rangle = C_3 \times C_6,
$$

$$
\sigma_1 : (w, x, y, z) \mapsto (\zeta_3 w, x, y, z), \quad \sigma_2 : (w, x, y, z) \mapsto (w, x, -y, \zeta_3 z).
$$

The fixed curves stratification is given by

The images of ξ_2 and ξ_3 in $X^{(1)}/G$ intersect in two points, so that

$$
Br([X/G]) = \mathbb{Z}/3\mathbb{Z}.
$$

3.333 The model is given by

$$
X = \{w^3 + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^3_{w,x,y,z},
$$

\n
$$
G = \langle \sigma_1, \sigma_2, \sigma_3 \rangle = C_3^3, \quad \sigma_1 : (w, x, y, z) \mapsto (\zeta_3 w, x, y, z),
$$

\n
$$
\sigma_2 : (w, x, y, z) \mapsto (w, x, \zeta_3 y, z), \quad \sigma_3 : (w, x, y, z) \mapsto (w, x, y, \zeta_3 z).
$$

The group

$$
Br([X/G]) = (\mathbb{Z}/3\mathbb{Z})^3
$$

has been computed in [\[11,](#page-39-2) Section 5].

• Automorphisms of Del Pezzo surfaces of degree 2

2.G2 The model is given by

$$
X = \{w^2 = L_4(x, y) + L_2(x, y)z^2 + z^4\} \subset \mathbb{P}(2, 1, 1, 1)_{w, x, y, z},
$$

$$
G = \langle \sigma_1, \sigma_2 \rangle = C_2^2,
$$

 $\sigma_1\colon (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2\colon (w, x, y, z) \mapsto (w, x, y, -z).$ The fixed curves stratification is

The images of ξ_1 and ξ_2 in $X^{(1)}/G$ meet at four points. Recall that a zero-cycle $\sum_i n_i P_i$ of degree 0 on an elliptic curve is a divisor of a function on the curve

if and only if $\sum n_i[P_i] = 0$, where the latter sum is for the group law of the elliptic curve. It follows that we have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^5.
$$

2.G4.1 The model is given by

$$
X = \{w^2 = L_4(x, y) + z^4\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z}, \quad G = \langle \sigma_1, \sigma_2 \rangle = C_2 \times C_4,
$$

$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, y, \zeta_4 z).
$$

The fixed curves stratification is

The images of ξ_1 and ξ_2 in $X^{(1)}/G$ meet at four points. We have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^3.
$$

 $\lfloor 2.G4.2 \rfloor$ The model is given by

$$
X = \{w^2 = x^4 + y^4 + z^4 + xyL_1(xy, z^2)\} \subset \mathbb{P}(2, 1, 1, 1)_{w, x, y, z},
$$

$$
G = \langle \sigma_1, \sigma_2 \rangle = C_2 \times C_4,
$$

$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, -y, \zeta_4 z).
$$

The fixed curves stratification is

The images of ξ_1 and ξ_2 in $X^{(1)}/G$ meet at two points. We have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^3.
$$

2.G6 The model is given by

$$
X = \{w^2 = x^3y + y^4 + z^4 + \lambda y^2 z^2\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma_1, \sigma_2 \rangle = C_2 \times C_6,
$$

\n
$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, \zeta_3 x, y, -z).
$$

The images of ξ_1 and ξ_2 in $X^{(1)}/G$ meet at two points. We have

$$
Br([X/G]) = \mathbb{Z}/2\mathbb{Z}.
$$

2.G8 The model is given by

$$
X = \{w^2 = x^3y + xy^3 + z^4\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z}, \quad G = \langle \sigma_1, \sigma_2 \rangle = C_2 \times C_8,
$$

$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, \zeta_8 x, -\zeta_8 y, z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_2 = \langle \sigma_1 \rangle & G & 3 & 0 & \\ \hline 2 & \{z = 0\} & C_4 = \langle \sigma_1 \sigma_2^2 \rangle & G & 1 & 0 & \end{array}
$$

The images of ξ_1 and ξ_2 in $X^{(1)}/G$ meet at three points. We have

 $Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^2.$

2.G12 The model is given by

$$
X = \{w^2 = x^3y + y^4 + z^4\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z}, \quad G = \langle \sigma_1, \sigma_2 \rangle = C_2 \times C_{12},
$$

$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, \zeta_3 x, y, \zeta_4 z).
$$

The fixed curves stratification is

The images of ξ_1 and ξ_3 in $X^{(1)}/G$ meet at two points. We have $Br([X/G]) = \mathbb{Z}/2\mathbb{Z}.$

2.G22 The model is given by

$$
X = \{w^2 = L_2(x^2, y^2, z^2)\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z}, \quad G = \langle \sigma_1, \sigma_2, \sigma_3 \rangle = C_2^3,
$$

$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, -y, z),
$$

$$
\sigma_3: (w, x, y, z) \mapsto (w, x, y, -z).
$$

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{12} = p_{13} = p_{14} = 2, \quad p_{23} = p_{24} = p_{34} = 1.
$$

Since the intersection of any three of the four curves ξ_i , $i = 1, 2, 3, 4$ is empty, we have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^6.
$$

2.G24 The model is given by

$$
X = \{w^2 = x^4 + y^4 + z^4 + \lambda x^2 y^2\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma_1, \sigma_2, \sigma_3 \rangle = C_2^2 \times C_4, \quad \sigma_1 \colon (w, x, y, z) \mapsto (-w, x, y, z),
$$

\n
$$
\sigma_2 \colon (w, x, y, z) \mapsto (w, x, -y, z), \quad \sigma_3 \colon (w, x, y, z) \mapsto (w, x, y, \zeta_4 z).
$$

The fixed curves stratification is

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{14} = 2
$$
, $p_{12} = p_{13} = p_{23} = p_{24} = p_{34} = 1$.

Since the intersection of any three of the four curves ξ_i , $i = 1, 2, 3, 4$ is empty, we have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^4.
$$

2.G44 The model is given by

$$
X = \{w^2 = x^4 + y^4 + z^4\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma_1, \sigma_2, \sigma_3 \rangle = C_2 \times C_4^2, \quad \sigma_1: (w, x, y, z) \mapsto (-w, x, y, z),
$$

\n
$$
\sigma_2: (w, x, y, z) \mapsto (w, x, \zeta_4 y, z), \quad \sigma_3: (w, x, y, z) \mapsto (w, x, y, \zeta_4 z).
$$

30

\vert Curves $\xi_i \vert$		(ξ_i)		$ g(\xi_i/D_{\xi_i}) $ Standard form
$\{w=0\}$	$C_2 = \langle \sigma_1 \rangle$			
${x = 0}$	$C_4 = \langle \sigma_1 \sigma_2 \sigma_3 \rangle$			ves
$u=0.5$	$C_4 = \langle \sigma_2 \rangle$			
$\{z=0\}$	$C_4 = \langle \sigma_3 \rangle$			

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{12} = p_{13} = p_{14} = p_{23} = p_{24} = p_{34} = 1.
$$

Since the intersection of any three of the four curves ξ_i , $i = 1, 2, 3, 4$ is empty, we have

$$
\mathrm{Br}([X/G])=({\mathbb Z}/2{\mathbb Z})^2\oplus({\mathbb Z}/4{\mathbb Z}).
$$

2.24.1 The model is given by

$$
X = \{w^2 = x^4 + y^4 + z^4 + \lambda x^2 y^2\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma_1, \sigma_2 \rangle = C_2 \times C_4, \quad \sigma_1: (w, x, y, z) \mapsto (w, x, -y, z),
$$

\n
$$
\sigma_2: (w, x, y, z) \mapsto (w, x, y, \zeta_4 z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{y = 0\} & C_2 = \langle \sigma_1 \rangle & G & 1 & 0 \\ \hline 2 & \{x = 0\} & C_2 = \langle \sigma_1 \sigma_2^2 \rangle & G & 1 & 0 \\ \hline 3 & \{z = 0\} & C_4 = \langle \sigma_2 \rangle & G & 1 & 0 \end{array} \qquad \text{yes}
$$

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{13} = p_{23} = 2, \quad p_{12} = 1.
$$

Since $\xi_1 \cap \xi_2 \cap \xi_3$ is empty, we have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^3.
$$

2.24.2 The model is given by

$$
X = \{w^2 = x^4 + y^4 + z^4 + \lambda x^2 y^2\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z},
$$

\n
$$
G = \langle \sigma_1, \sigma_2 \rangle = C_2 \times C_4, \quad \sigma_1: (w, x, y, z) \mapsto (-w, x, -y, z),
$$

\n
$$
\sigma_2: (w, x, y, z) \mapsto (w, x, y, \zeta_4 z).
$$

$$
\begin{array}{c|c|c|c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{z = 0\} & C_4 = \langle \sigma_2 \rangle & G & 1 & 1 & \text{yes} \end{array}
$$

We have

$$
Br([X/G]) = (\mathbb{Z}/4\mathbb{Z})^2.
$$

2.44.1 The model is given by

$$
X = \{w^2 = x^4 + y^4 + z^4\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z}, \quad G = \langle \sigma_1, \sigma_2 \rangle = C_4^2,
$$

$$
\sigma_1: (w, x, y, z) \mapsto (w, x, \zeta_4 y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, y, \zeta_4 z).
$$

The fixed curves stratification is

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{12} = p_{13} = 1, \quad p_{23} = 2.
$$

Since $\xi_1 \cap \xi_2 \cap \xi_3$ is empty, we have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/4\mathbb{Z}).
$$

2.44.2 The model is given by

$$
X = \{w^2 = x^4 + y^4 + z^4\} \subset \mathbb{P}(2, 1, 1, 1)_{w,x,y,z}, \quad G = \langle \sigma_1, \sigma_2 \rangle = C_4^2,
$$

$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, \zeta_4 y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, y, \zeta_4 z).
$$

The fixed curves stratification is

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{12} = p_{13} = p_{23} = 1.
$$

Since $\xi_1 \cap \xi_2 \cap \xi_3$ is empty, we have

$$
Br([X/G]) = \mathbb{Z}/2\mathbb{Z}.
$$

• Automorphisms of Del Pezzo surfaces of degree 1

1.B2.1 The model is given by

$$
X = \{w^2 = z^3 + zL_2(x^2, y^2) + L_3(x^2, y^2)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

\n
$$
G = C_2^2, \quad \sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, -y, z).
$$

The fixed curves stratification is

The images of ξ_1 and ξ_2 in $X^{(1)}/G$ intersect in three points. We have $Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^4.$

 $1.\sigma\rho2.1$ The model is given by

$$
X = \{w^2 = z^3 + L_3(x^2, y^2)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z}, \quad G = C_6 \times C_2,
$$

$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, \zeta_3 z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, -y, z).
$$

The fixed curves stratification is

The images of ξ_1 and ξ_2 in $X^{(1)}/G$ intersect in one point. We have

$$
Br([X/G]) = 0.
$$

 $1.\sigma \rho 3$ The model is given by

$$
X = \{w^2 = z^3 + L_2(x^3, y^3)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z}, \quad G = C_6 \times C_3,
$$

$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, \zeta_3 z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, \zeta_3 y, z).
$$

The fixed curves stratification is

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{23} = p_{24} = p_{34} = 1.
$$

Since $\xi_2 \cap \xi_3 \cap \xi_4$ is empty, we have

$$
Br([X/G]) = \mathbb{Z}/3\mathbb{Z}.
$$

 $1.\rho 3$ The model is given by

$$
X = \{w^2 = z^3 + L_2(x^3, y^3)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z}, \quad G = C_3^2,
$$

 $\sigma_1: (w, x, y, z) \mapsto (w, x, y, \zeta_3 z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, \zeta_3 y, z).$

The fixed curves stratification is

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{12} = p_{13} = 2, \quad p_{23} = 1.
$$

Since $\xi_1 \cap \xi_2 \cap \xi_3$ is empty, we have

$$
\mathrm{Br}([X/G]) = (\mathbb{Z}/3\mathbb{Z})^3.
$$

1.B4.1 The model is given by

$$
X = \{w^2 = z^3 + zL_1(x^4, y^4) + x^2L'_1(x^4, y^4)\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z},
$$

\n
$$
G = C_2 \times C_4,
$$

\n
$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, \zeta_4 y, z).
$$

The fixed curves stratification is

$$
\begin{array}{c|c|c|c|c|c|c|c} i & \text{Curves } \xi_i & I_{\xi_i} & D_{\xi_i} & g(\xi_i) & g(\xi_i/D_{\xi_i}) & \text{Standard form} \\ \hline 1 & \{w = 0\} & C_2 = \langle \sigma_1 \rangle & G & 4 & 0 \\ \hline 2 & \{x = 0\} & C_2 = \langle \sigma_1 \sigma_2^2 \rangle & G & 1 & 0 \\ \hline 3 & \{y = 0\} & C_4 = \langle \sigma_2 \rangle & G & 1 & 0 \end{array}
$$

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{12} = 2, \quad p_{13} = 3, \quad p_{23} = 1.
$$

Since $\xi_1 \cap \xi_2 \cap \xi_3$ is empty, we have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^4.
$$

1.B6.1 The model is given by

$$
X = \{w^2 = z^3 + \lambda zx^4 + \mu x^6 + y^6\} \subset \mathbb{P}(3, 1, 1, 2)_{w, x, y, z}, \quad G = C_2 \times C_6,
$$

\n
$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, -\zeta_3 y, z).
$$

The fixed curves stratification is

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{13}=3, \quad p_{12}=p_{23}=1.
$$

Since $\xi_1 \cap \xi_2 \cap \xi_3$ is empty, we have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^3.
$$

 $1.\sigma \rho 6$ The model is given by

$$
X = \{w^2 = z^3 + x^6 + y^6\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z}, \quad G = C_6^2,
$$

$$
\sigma_1\colon (w,x,y,z)\mapsto (-w,x,y,\zeta_3z), \quad \sigma_2\colon (w,x,y,z)\mapsto (w,x,-\zeta_3y,z).
$$

The fixed curves stratification is

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

 $p_{14} = 3$, $p_{13} = p_{23} = p_{24} = p_{34} = 1$.

Since the intersection of any three of the four curves ξ_i , $i = 1, 2, 3, 4$ is empty, we have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^3 \oplus (\mathbb{Z}/3\mathbb{Z}).
$$

 $1.\rho 6$ The model is given by

$$
X = \{w^2 = z^3 + x^6 + y^6\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z}, \quad G = C_3 \times C_6,
$$

$$
\sigma_1: (w, x, y, z) \mapsto (w, x, y, \zeta_3 z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, -\zeta_3 y, z).
$$

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{13}=2, \quad p_{12}=p_{23}=1.
$$

Since $\xi_1 \cap \xi_2 \cap \xi_3$ is empty, we have

$$
Br([X/G]) = (\mathbb{Z}/3\mathbb{Z})^2.
$$

1.B6.2 The model is given by

$$
X = \{w^2 = z^3 + \lambda zx^2y^2 + x^6 + y^6\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z}, \quad G = C_2 \times C_6,
$$

$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (w, x, -\zeta_3 y, \zeta_3 z).
$$

The fixed curves stratification is

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{12} = p_{13} = p_{23} = 1.
$$

Since $\xi_1 \cap \xi_2 \cap \xi_3$ is empty, we have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^3.
$$

 $1.B12$ The model is given by

$$
X = \{w^2 = z^3 + \lambda zx^4 + y^6\} \subset \mathbb{P}(3, 1, 1, 2)_{w,x,y,z}, \quad G = C_2 \times C_{12},
$$

$$
\sigma_1: (w, x, y, z) \mapsto (-w, x, y, z), \quad \sigma_2: (w, x, y, z) \mapsto (\zeta_4 w, x, \zeta_{12} y, -z).
$$

The fixed curves stratification is

36

Let p_{ij} be the number of intersection points of the images of ξ_i and ξ_j in $X^{(1)}/G$. We record

$$
p_{13} = 2, \quad p_{12} = p_{23} = 1.
$$

Since $\xi_1 \cap \xi_2 \cap \xi_3$ is empty, we have

$$
Br([X/G]) = (\mathbb{Z}/2\mathbb{Z})^2.
$$

4.3. Tables. We record the above computations in the following tables.

Cyclic groups G

Noncyclic groups $\cal G$

REFERENCES

- [1] J. Blanc, Finite abelian subgroups of the Cremona group of the plane, 2006. Ph.D. Thesis, Université de Genève, arXiv : math/0610368.
- [2] J. Blanc, Elements and cyclic subgroups of finite order of the Cremona group, Comment. Math. Helv. 86 (2011), no.2, 469–497.
- [3] J. Blanc, I. Cheltsov, A. Duncan, and Y. Prokhorov, Finite quasisimple groups acting on rationally connected threefolds, Math. Proc. Cambridge Philos. Soc. 174 (2023), no.3, 531–568.
- [4] F. Bogomolov and Y. Prokhorov, On stable conjugacy of finite subgroups of the plane Cremona group I, Cent. Eur. J. Math. 11 (2013), no.12, 2099–2105.
- [5] J.-L. Colliot-Thélène, *Birational invariants, purity and the Gersten conjecture*, Ktheory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), 1–64, Proc. Sympos. Pure Math., 58, Part 1, Amer. Math. Soc., Providence, RI, 1995.
- [6] I. Cheltsov, Y. Tschinkel, and Zh. Zhang, Equivariant geometry of singular cubic three $folds, \text{arXiv}: 2401.10974.$
- [7] I. V. Dolgachev and V. A. Iskovskikh, Finite subgroups of the plane Cremona group, in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, 443–548, Progr. Math., 269 Birkhäuser Boston, Ltd., Boston, MA, 2009.
- [8] B. Hassett, Y. Tschinkel, and Zh. Zhang, Rationality of forms of $\overline{\mathcal{M}}_{0,n}$, arXiv : 2402.03062.
- [9] A. Kresch and Y. Tschinkel, Effectivity of Brauer-Manin obstructions on surfaces, Adv. Math. **226** (2011), no. 5, 4131–4144.
- [10] A. Kresch and Y. Tschinkel, Models of Brauer-Severi surface bundles, Mosc. Math. J. 19 (2019), no. 3, 549–595.
- [11] A. Kresch and Y. Tschinkel, Cohomology of finite subgroups of the plane Cremona group, to appear in Algebraic Geometry and Physics, (2022).
- [12] A. Kresch and Y. Tschinkel, Unramified Brauer group of quotient spaces by finite groups, arXiv : 2401.08547.
- [13] Yu. I. Manin, Rational surfaces over perfect fields, II, Mat. Sb. (N.S.) 72 (114) (1967), 161–192.
- [14] E. Shinder, The Bogomolov-Prokhorov invariant of surfaces as equivariant cohomology, Bull. Korean Math. Soc. 54 (2017), no.5, 1725–1741.
- [15] Z. Reichstein and B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for G -varieties, Canad. J. Math. 52 (5) (2000), 1018–1056.

Courant Institute of Mathematical Sciences, New York University, New York, 10012, U.S.A.

Email address: pirutka@cims.nyu.edu Email address: zhijia.zhang@cims.nyu.edu

40