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Abstract. Let X be a smooth projective rational variety carrying a reg-
ular action of a finite abelian group G. We give examples of effective com-
putation of the Brauer group of the quotient stack [X/G] in dimensions 2
and 3 using residues in Galois cohomology and the geometry of fixed loci.
In particular, we compute Br([X/G]) for all G-minimal del Pezzo surfaces.

1. Introduction

Let k be a field of characteristic 0. Consider a smooth projective rational
varietyX over an algebraic closure k̄ of k carrying a regular and generically free
action of a finite groupG. Studying such actions up to equivariant birationality
is a classical and active area in birational geometry. Of particular interest
is the linearizability problem, which asks whether or not the G-action on X
is linearizable, i.e., equivariantly birational to a linear G-action on Pn. An
arithmetic counterpart of this problem is the classical rationality problem over
nonclosed fields k, where the Galois action is considered as an analogue of the
G-action.

An established strategy to study both linearizability and rationality prob-
lems is to seek nontrivial birational invariants. The similarities between the
two problems are well reflected in the following invariant: the group cohomol-
ogy

H1(H,Pic(Xk̄)), H ⊆ G.(1.1)

This invariant was first studied by Yu. Manin [13] in the arithmetic setting,
where G = Gal(k̄/k) is the Galois group and the action is induced from the
Galois action on k̄. F. Bogomolov and Y. Prokhorov [4] extended it to the
equivariant setting, when G is a finite group and the action comes from geo-
metric automorphisms of Xk̄. In the respective cases, the vanishing of (1.1)
for every subgroup H of G is a necessary condition for X to be stably rational
over k, and for the G-action on Xk̄ to be stably linearizable. Applications of
this invariant to the study of the linearizability problem can be found in [6, 8].
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In the arithmetic setting, when k is a nonclosed field, the Leray spectral
sequence for the Galois action gives rise to a well-known long exact sequence

(1.2) 0 → Pic(X) → Pic(Xk̄)
Gal(k̄/k) → Br(k) →

→ ker(Br(X) → Br(Xk̄)) → H1(Gal(k̄/k),Pic(Xk̄)) → H3(Gal(k̄/k), k̄×),

where Br(k) and Br(X) are the Brauer group of k and X respectively. The
group ker(Br(X) → Br(Xk̄)) is known as the algebraic part of the Brauer
group.

In the equivariant setting, when k = k̄, the Leray spectral sequence for the
G-action produces an exact sequence similar to (1.2)

(1.3) 0 → Hom(G, k×) → Pic(X,G) → Pic(X)G → H2(G, k×) →
→ Br([X/G]) → H1(G,Pic(X)) → H3(G, k×),

where Pic(X,G) is the group ofG-linearizable line bundles onX and Br([X/G])
is the Brauer group of the quotient stack [X/G]. The group Br([X/G]) is a G-
stably birational invariant, and can be viewed as an analogue of the algebraic
part of the Brauer group as in (1.2).

From now on, we focus on the equivariant setting with k = k̄, and study
the groups Br([X/G]) and H1(G,Pic(X)). Given a G-action on X, it can
be computationally challenging to find the induced G-action on Pic(X), as
this requires a thorough analysis of divisors on X. On the other hand, the
geometry of the fixed locus XG contains rich information readily available in
the equivariant setting, but absent in the arithmetic setting (where the Galois
fixed locus simply consists of all k-rational points).

When G is a cyclic group acting on a smooth rational surface X with maxi-
mal stabilizers, the works of F. Bogomolov and Y. Prokhorov, and E. Shinder
[4, 14] give a formula for H1(G,Pic(X)) only involving information about the
G-fixed curves on X. Generalizing this, for any finite group G acting on a
smooth projective variety X, A. Kresch and Y. Tschinkel gave an algorithm
to compute Br([X/G]) which only requires information about divisors with
nontrivial stabilizers, and presented examples of effective computations when
X is a rational surface [11, 12].

In this note, we extend the scope of applications of this algorithm to dimen-
sion 3. In particular, we produce a nontrivial class in Br([X̃/G]) for a smooth
model X̃ of a singular cubic threefold X, and showcase the connection between
Br([X̃/G]) and H1(G,Pic(X̃)) through this example (see Remark 3.2). We also
complete the computations of Br([X/G]) in dimension 2 for all G-minimal del
Pezzo surfaces X and finite abelian groups G.
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Here is a road map of the paper. In Section 2, we review basic facts about the
Brauer group of the quotient stack. In Section 3, we produce an example with
nontrivial Br([X/G]) in dimension 3. We compute Br([X/G]) in dimension 2
in Section 4.

Acknowledgements. We would like to thank Yuri Tschinkel for many helpful
discussions, and Andrew Kresch for comments on the manuscript. The first
author was partially supported by NSF grant DMS-2201195.

2. Preliminaries

2.1. Brauer groups. Let X be a smooth projective variety over a field k
and n a positive integer invertible in k. Let Hi(k(X), µn) be the Galois coho-
mology of the function field of X with µn-coefficients, where µn is the étale
k-group scheme of the nth-roots of unity (in particular, µn ≃ Z/nZ when k is
algebraically closed).

If v is a discrete valuation on the field k(X), one has the residue maps

∂i
v : H

i(k(X), µ⊗j
n ) → Hi−1(κ(v), µ⊗(j−1)

n ),

where κ(v) is the residue field. In particular, for a ∈ H1(k(X),Z/2Z) and for
(a, b) ∈ H2(k(X),Z/2Z), one has

∂1
v(a) = v(a) mod 2 ∈ Z/2Z,

∂2
v(a, b) = (−1)v(a)v(b)av(b)b−v(a) ∈ κ(v)×/(κ(v)×)2,(2.1)

where for a unit u in the valuation ring of v, we denote by ū its image in the
residue field κ(v).
For an irreducible divisor D on X, we denote by vD the associated divisorial

valuation on k(X), ∂i
D the corresponding residue maps, and κ(vD) or κ(D) the

residue field. Similarly, for ξ ∈ X(1) a codimension 1 point of X, we denote
by vξ and ∂i

ξ the associated valuation and residue maps. The n-torsion in the
Brauer group of X can be computed via

(2.2) Br(X)[n] =
⋂
D

ker(∂2
D),

where D runs over all irreducible divisors on X (see [5, Proposition 4.2.3] and
[5, Theorem 4.1.1]; note that we assume that X is smooth and projective).

Now let k be an algebraically closed field of characteristic zero and X a
smooth projective variety over k carrying a generically free regular action of a
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finite group G. An analogue of the classical formula (2.2) for Br([X/G]), the
Brauer group of the quotient stack [X/G], is established in [11, 12]:

Proposition 2.1. Let k be an algebraically closed field of characteristic zero
and X a smooth projective variety over k carrying a generically free regular
action of a finite group G. For any irreducible divisor D on X, we denote by
ID the stabilizer group

ID := {g ∈ G | g acts trivially on D}.
Then the n-torsion subgroup of Br([X/G]), denoted by Br([X/G])[n], can be
computed via

(2.3) Br([X/G])[n] =
⋂
D

ker
(
|ID| · ∂2

D′

)
⊂ H2(k(X)G,Z/nZ),

where D runs over all irreducible divisors on X, |ID| is the order of ID, and
∂2
D′ is the residue map in degree 2 corresponding to the divisorial valuation on

k(X)G given by the image D′ of D.

Proof. See [11, Proposition 4.2], [12, Section 4], and [10, Proposition 2.2]. □

2.2. Rational surfaces. In this subsection, we review an effective algorithm
provided in [11] to compute Br([X/G]) when X is a rational surface.

Let X be a smooth projective rational surface carrying a generically free
regular action of a finite group G. Recall that the G-action on X is called
in standard form if there exists a G-invariant simple normal crossing divisor
D ⊂ X such that

• the G-action on X \ D is free, and
• for any g ∈ G and any irreducible component D of D, either g(D) = D
or g(D) ∩D = ∅.

Any G-action on X can be brought into standard form via successive blowups
[15, Theorem 3.2]. The following proposition provides an effective algorithm
only involving divisors with nontrivial stabilizers to determine Br([X/G]).

Proposition 2.2 ([11, Proposition 4.2, Corollary 4.6]). Let X be a smooth
projective rational surface carrying a finite group G-action in standard form.
Then the group Br([X/G])[n] can be identified with the kernel of the map⊕

[ξ]∈X(1)/G

H1(Spec(k(ξ)Dξ),Z/nZ) ⊕∂1

−→
⊕

[p]∈X/G

Z/nZ,(2.4)

where the sum on the left runs over G-orbit representatives [ξ] of codimension
1 points on X such that the stabilizer group Iξ has cardinality n,

Dξ := {g ∈ G | ξ · g = ξ},
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and the sum on the right runs over G-orbit representatives [p] of points of X.

Using Proposition 2.2, we compute Br([X/G]) for all G-minimal del Pezzo
surfaces with abelian groups G in Section 4. Here we introduce the notation
and demonstrate the process in detail with a concrete example.

Example 2.3. We consider the case 3.36 in [1]. Let X be a smooth cubic
surface given by

{w3 + x3 + xy2 + z3 = 0} ⊂ P3
w,x,y,z,

with an action of G = C3 × C6 generated by

σ : (w, x, y, z) 7→ (ζ3w, x, y, z),

τ : (w, x, y, z) 7→ (w, x,−y, ζ3z).

We list the stratification of curves with nontrivial stabilizers

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi)
1 {y = 0} ∩X C2 = ⟨τ 3⟩ G 1 0
2 {w = 0} ∩X C3 = ⟨σ⟩ G 1 0
3 {z = 0} ∩X C3 = ⟨τ 2⟩ G 1 0

where

• the second column displays equations of the curves ξi with nontrivial
generic stabilizers;

• the third column displays the stabilizers Iξi of ξi;
• the fourth column displays the groups Dξi = {g ∈ G | ξi · g = ξi};
• the fifth column displays the genera of ξi;
• the sixth column displays the genera of ξi/Dξi , computed via the
Riemann-Hurwitz formula.

One can check that the G-action on X is in standard form: the G-action is
free in the complement of the simple normal crossing divisor ξ1 ∪ ξ2 ∪ ξ3 in X,
and G leaves invariant each of the curves ξi for i = 1, 2, 3. By Proposition 2.2,
we know that Br([X/G])[n] is possibly nonzero only when n = 2 or 3.
For n = 3, observe that ξ2 ∩ ξ3 consists of three points where two of them

are in the same G-orbit. It follows that the quotient curves ξ2/G and ξ3/G
are both rational and meet at two points, denoted by p1 and p2. The kernel
of (2.4) consists of classes of functions ramified only at p1 and p2, where the
ramification indices are distinct at two points. It follows that

Br([X/G])[3] = Z/3.
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For n = 2, the quotient curve ξ1/G has genus 0. Then

ker

H1(Spec(k(ξ1))
G,Z/2Z) →

⊕
[p]∈X/G

Z/2Z

 = 0

(see [5, Proposition 4.2.1(b)]). Combining the 2-torsion and 3-torsion sub-
groups, we conclude that

Br([X/G]) = Z/3Z.

3. A cubic threefold

Let k be an algebraically closed field of characteristic zero, and X the cubic
threefold given by

X = {F = 0} ⊂ P4
y1,...,y5

,

where

F = y23(y1 − y4) + y25(y1 + y2)− 2y1y3y5 + f,

f = −y21y2 − y1y
2
2 + y21y4 − y1y

2
4 + y22y4 − y2y

2
4 − 2y1y2y4.

Let G = C2 act on X by

(y1, y2, y3, y4, y5) 7→ (y1, y2,−y3, y4,−y5).

The singular locus of X consists of six ordinary double points:

p1 = [0 : 0 : 0 : 1 : −1], p2 = [0 : 0 : 0 : 1 : 1], p3 = [1 : 0 : −1 : 0 : −1],

p4 = [1 : 0 : 1 : 0 : 1], p5 = [0 : 1 : −1 : 0 : 0], p6 = [0 : 1 : 1 : 0 : 0].

Let X̃ be the blowup of X at p1, . . . , p6 and the G-invariant curve given by

{y3 = y5 = 0} ∩X.

Since p1, . . . , p6 are ordinary double points, X̃ is smooth.

Proposition 3.1. In the above notation, the group Br([X̃/G]) is nonzero.
More precisely, the class

α =

(
f

(y2 − y4)3
,
−y1y4 + y1y2 − y2y4

(y2 − y4)2

)
∈ H2(k(X)G,Z/2Z)

is nontrivial, and belongs to Br([X̃/G]). In particular, the G-action on X is
not linearizable.
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The rest of this section is devoted to the proof of Proposition 3.1. First, let

q = −y1y4 + y1y2 − y2y4

and

α = (a, b) ∈ H2(k(X)G,Z/2Z),(3.1)

where

a :=
f

(y2 − y4)3
, b :=

q

(y2 − y4)2
.

Since X̃ is smooth and projective, by Proposition 2.1, it suffices to check
that for all divisorial valuations on k(X̃)G given by the image D′ of a divisor
D on X̃, we have

|ID| · ∂2
D′(α) = 0.(3.2)

Note that no singular point of X lies on the plane section of X given by
y3 = y5 = 0. In particular, we may blow up the singular points and the curve
{y3 = y5 = 0} ∩X independently.

Blowup of y3 = y5 = 0. The blowup Y of X along the cubic curve

{y3 = y5 = 0} ∩X

is given by

Y = {F = y3z5 − y5z3 = 0} ⊂ P4
y1,...,y5

× P1
z3,z5

.

We first compute residues in the affine chart U of Y given by y4 = z3 = 1. Put

g = y1 − y4 + y1z
2
5 + y2z

2
5 − 2y1z5.

Then y5 = y3z5 and the equation of U is

U : y23 ḡ + f̄ = 0,

where ḡ (resp. f̄) is the affine equation of g (resp. f) in the chart y4 = 1. The
action of G on U is

(y1, y2, y3, z5) 7→ (y1, y2,−y3, z5).

Then U/G is the affine rational variety

(3.3) U/G ⊂ A4
y1,y2,w3,z5

, w3ḡ + f̄ = 0.

In k(U)G, one has f̄ = −w3ḡ, and we rewrite

α =

(
−w3ḡ

(y2 − 1)3
,
−y1 + y1y2 − y2

(y2 − 1)2

)
∈ H2(k(U)G,Z/2) = H2(k(X)G,Z/2).
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We then compute residues of α at divisors of U/G ≃ A3
y1,y2,z5

. From the
definition of α, we know that ∂D′(α) = 0 for any divisor D′ of U/G except
possibly when D′ is one of the following four divisors:

D′
1 : w3 = 0, D′

2 : ḡ = 0, D′
3 : y2 − 1 = 0, D′

4 : −y1 + y1y2 − y2 = 0.

We consider these four cases:

(1) D′
1 is the image of the divisor D1 : y3 = 0 on U , with |ID1| = 2. Hence

condition (3.2) is satisfied for D1. We claim that

(3.4) ∂D′
1
(α) = q = −y1 + y1y2 − y2 ̸= 0 in κ(D′

1)
×/(κ(D′

1)
×)2.

Indeed, at the generic point of D′
1, the function ḡ is invertible. Hence

κ(D′
1) is the field of functions of the subscheme

{f̄ = 0} ⊂ A3
y1,y2,z5

,

which is a purely transcendental extension of the function field of the
cubic curve

C : f̄ = −y21y2 − y1y
2
2 + y21 − y1 + y22 − y2 − 2y1y2 = 0 ⊂ A2

y1,y2
.

Since the function y2−1 is invertible at the generic point of C, we may
write:

f̄(y1, y2) = f̄

(
q + y2
y2 − 1

, y2

)
=

y22(−q − 5)− 4qy2 − q2 − q

y2 − 1
.

The discriminant of

y22(−q − 5)− 4qy2 − q2 − q

as a quadratic polynomial in the variable y2 over k(q) is

d = q(−4q2 − 8q − 20)

with −4q2 − 8q − 20 being a nonsquare in k(q). We obtain:

κ(D1) = k(q)(
√
d)(z5).

Hence the kernel of the natural map

k(q)×/(k(q)×)2 → κ(D′
1)

×/(κ(D′
1)

×)2

is generated by d, so that q is a nonzero element in κ(D′
1)

×/(κ(D′
1)

×)2.
(2) ∂D′

2
(α) is the image of −y1 + y1y2 − y2 in κ(D′

2)
×/(κ(D′

2)
×)2. By the

definition of D′
2, we have a relation

y1 − 1 + y1z
2
5 + y2z

2
5 − 2y1z5 = 0
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in κ(D′
2), where we still write y1, y2, z5 for their images in κ(D′

2)
×. We

rewrite this condition as:

(y1 + y2)(z5 −
y1

y1 + y2
)2 +

−y1 + y1y2 − y2
y1 + y2

= 0,

so that

−y1 + y1y2 − y2 = −(y1 + y2)
2(z5 −

y1
y1 + y2

)2

is a square in κ(D′
2)

× and ∂D′
2
(α) = 0.

(3) ∂D′
3
(α) = (−y1 + y1y2 − y2)

3|y2=1 = −1 is a square in κ(D′
3)

×. So we
have that ∂D′

3
(α) = 0.

(4) ∂D′
4
(α) is the image of f̄

(y2−1)3
in κ(D′

4)
×/(κ(D′

4)
×)2. In the field κ(D′

4),

we have a relation

y1 =
y2

y2 − 1
.

Then we find that in κ(D′
4),

f̄

(y2 − 1)3
= − 5y22

(y2 − 1)4

is a square, hence ∂D′
4
(α) = 0.

The computations in the remaining charts y1 = z3 = 1, y2 = z3 = 1,
and yi = z5 = 1, i = 1, 2, 4 of Y are similar. Hence we have verified that
the condition (3.2) holds for all divisors on X̃/G except the images of the
exceptional divisors of the blowups of six singular points.

Exceptional divisors of Blp1,p2(X). Let v be the valuation on k(X)G corre-
sponding to the exceptional divisor of the blowup of X at the G-orbit of two
singular points p1 and p2. We work with the affine chart y4 = 1. Put

g1 = y1, g2 = y2, g3 = y3, g4 = y25 − 1,

one may view the union of p1 and p2 as a variety given by

{g1 = g2 = g3 = g4 = 0} ⊂ A4
y1,y2,y3,y5

.

The blowup Blp1,p2(A4) is given by

{gizj − gjzi = 0 | i, j = 1, . . . , 4} ⊂ A4
y1,y2,y3,y5

× P3
z1,z2,z3,z4

.

The induced G-action is given by

(y1, y2, y3, y5)× (z1, z2, z3, z4) 7→ (y1, y2,−y3,−y5)× (z1, z2,−z3, z4).
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In the affine chart z4 = 1, the defining equations are equivalent to the change
of variables

yi = zi(y
2
5 − 1), i = 1, 2, 3.(3.5)

The exceptional divisor E is given by y25 = 1. Note that it consists of two
components in the same G-orbit. So it gives rise to a divisorial valuation v
of k(X)G. Since a, b ∈ k(X)G, after substituting (3.5) into (3.1), one can
compute

v

(
f

(y2 − y4)3

)
= v

(
q

(y2 − y4)2

)
= 1.(3.6)

From (2.1), one has

∂v(α) =
f

q(z2(y25 − 1)− 1)
= −1 ∈ κ(v)×/(κ(v)×)2

where the second equality is obtained via evaluation at y25 = 1. It follows from
(3.6) that ∂v(a) = 0.
The computations of the residue of α along exceptional divisors of blowups

of the other two G-orbits of singular points are similar. We summarize them
below.

Exceptional divisors of Blp3,p4(X). Let v be the valuation on k(X)G cor-
responding to the exceptional divisors of Blp3,p4(X). Similarly as (3.5), after
choosing an appropriate affine chart and introducing new coordinates z2, z3, z4,
the blowup of P4 at p3 and p4 can be considered as the change of variables

y1 = 1, y2 = z2(y
2
3 − 1),

y4 = z4(y
2
3 − 1), y5 = −z3(y

2
3 − 1) + y3.

Plugging this into (3.1), one can compute

v

(
f

(y2 − y4)3

)
= −2, v

(
q

(y2 − y4)2

)
= −1.

It follows from (3.1) that

∂v(α) = −(z2 − z4)
2

is trivial in κ(v)×/(κ(v)×)2.
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Exceptional divisors of Blp5,p6(X). Let v be the valuation on k(X)G cor-
responding to the exceptional divisors of Blp5,p6(X). Similarly as before, after
choosing an appropriate affine chart and introducing new coordinates z1, z4, z5,
the blowup of P4 at p5 and p6 can be considered as the change of variables

y2 = 1, yi = zi(y
2
3 − 1), i = 1, 4, 5.

Plugging this into (3.1), one can compute

v

(
f

(y2 − y4)3

)
= v

(
q

(y2 − y4)2

)
= 1.

Then ∂v(α) is obtained by evaluating

f

q(1− z4(y23 − 1))

at y3 − 1 = 0. After the above change of variables, this gives ∂v(α) = −1, and
thus we know ∂v(α) = 0.

In summary, condition (3.2) is satisfied for all divisors on X̃/G, hence α
defines an element of Br([X̃/G]). Moreover, it is nonzero since its residue at
w3 = 0 is nonzero by (3.4). Since G is a cyclic group, one has

H2(G, k×) = H3(G, k×) = 0.

The sequence (1.3) implies that

H1(G,Pic(X̃)) = Br([X̃/G])(3.7)

so that the G-action on X is not (stably) linearizable.

Remark 3.2. For the G-action on X given in Proposition 3.1, it is also com-
puted in [6] that

H1(G,Pic(X̂)) = H1(G,Cl(X)) = Z/2Z(3.8)

where X̂ is the blowup of X at p1, . . . , p6. In particular, the divisor class group
Cl(X) of X is generated by the class F of a general hyperplane section on
X and two classes of rational normal cubic scrolls S1 and S2 in X subject to
the relation S1 + S2 = 2F . The G-action switches S1 and S2, contributing to
nontrivial cohomology (3.8).

Our computation above illustrates how to find nontrivial elements in the
group Br([X̃/G]) via residues in Galois cohomology, without using information

of Pic(X̂) as in [6] or the group-theoretic formulas as in [12].
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On the other hand, our computation reflects a striking similarity with the
computation in [6], making the equality (3.7) explicit. Indeed, with the nota-
tion in Proposition 3.1, the factor q = −y1y4 + y1y2 − y2y4 in α is a quadric
section (equivalent to 2F in Cl(X)) cutting out two cubic scrolls on X:

X ∩ {q = 0} = R1 +R2,

where

R1 ={q = y2y5 + y1(
√
5y2 − y3 + y5) = y3y4 − y1(y3 −

√
5y4 − y5) = 0},

R2 ={q = y2y5 − y1(
√
5y2 + y3 − y5) = y3y4 − y1(y3 +

√
5y4 − y5) = 0}.

One sees that R1 and R2 are two rational normal cubic scrolls, corresponding
to the two classes S1 and S2 in Cl(X) which contribute to (3.8).

4. Rational surfaces

Throughout this section, we work over k = C. Let Cr2(C) be the plane
Cremona group, i.e., the group of birational automorphisms over C of P2.
Finite abelian subgroups of Cr2(C) have been classified in [1]. We recall the
basic settings. Let G ⊂ Cr2(C) be a finite group. It is known that we can
find a smooth projective surface X with a regular G-minimal action on X
inducing the embedding G ⊂ Cr2(C). Here a G-minimal action means one of
the following two cases holds

(1) Pic(X)G = Z and X is a del Pezzo surface;
(2) Pic(X)G = Z2 and X is a G-conic bundle.

In the remainder of this section, we compute Br([X/G]) in case (1), i.e., for
G-minimal del Pezzo surfaces X using Proposition 2.2. We focus on the cases
when G is a finite abelian group, and rely on a classification of such models, in
particular the lists of groups and regular actions in [1, Chapter 10]. We omit
technical details of the computation and refer readers to Example 2.3 for an
illustration of the computation process. We keep the labels and notation as in
loc. cit. In particular,

• Ld(x1, . . . , xn) denotes a general homogeneous form of degree d in vari-
ables x1, . . . , xn;

• ζn is a primitive n-th root of unity;
• λ, µ are general complex numbers.

4.1. Cyclic groups. Note that for an action of a cyclic group G on a smooth
projective variety X, we have H2(G,C×) = 0. Then (1.3) implies that

Br([X/G]) = H1(G,Pic(X)).
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Let G ⊂ Cr2(C) be a cyclic group generated by an element σ of order n. By
[1, Chapter 10.1], we know that up to conjugation in Cr2(C), the embedding
G ⊂ Cr2(C) is induced by a G-action on X in one of the following cases:

• Linear automorphisms.
0.n X = P2 and σ acts via weights (1, 1, ζn). One has Br([X/G]) = 0 in these
cases.

• Involutions. There are three types of involutions (elements of order 2) in
Cr2(C), up to conjugation. They are:

C.2 de Jonquières involutions: X is a conic bundle and the fixed locus is a
hyperelliptic curve of genus g > 0. The model is in standard form. We have

Br([X/G]) = (Z/2Z)2g

(see [4]).

2.G Geiser involutions: The model is given by

X = {w2 = L4(x, y, z)} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ⟩ = C2, σ : (w, x, y, z) 7→ (−w, x, y, z).

The fixed curves stratification is given by

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ⟩ G 3 3 yes

We have

Br([X/G]) = (Z/2Z)6.

1.B Bertini involutions: The model is given by

X = {w2 = z3 + L2(x, y)z
2 + L4(x, y)z + L6(x, y)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C2, σ : (w, x, y, z) 7→ (−w, x, y, z).

The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ⟩ G 4 4 yes

We have

Br([X/G]) = (Z/2Z)8.

• Roots of de Jonquières Involutions.
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C.ro.m and C.re.m X is a conic bundle, σm is a de Jonquières involution for
some integer m and n = 2m. The only stratum with nontrivial stabilizer is a
hyperelliptic curve ξ of genus g fixed by σm. The model X ý G is in standard
form and Br([X/G]) has been computed in [11, Section 5]. The genus of the
quotient curve ξ/G depends on the number s of fixed points of σ on ξ. Note
that s can be 0, 2 or 4. Let r = 2g+2

m
, we have

Br([X/G]) =


(Z/2Z)r−2 if s = 4,

(Z/2Z)r−1 if s = 2,

(Z/2Z)r if s = 0.

• n=3.
3.3 The model is given by

X = {w3 = L3(x, y, z)} ⊂ P3
w,x,y,z,

G = ⟨σ⟩ = C3, σ : (w, x, y, z) 7→ (ζ3w, x, y, z).

The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C3 = ⟨σ⟩ G 1 1 yes

We have

Br([X/G]) = (Z/3Z)2.

1.ρ The model is given by

X = {w2 = z3 + L6(x, y, z)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C3, σ : (w, x, y, z) 7→ (w, x, y, ζ3z).

The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {z = 0} C3 = ⟨σ⟩ G 2 2 yes

We have

Br([X/G]) = (Z/3Z)4.

• n=4.
2.4 The model is given by

X = {w2 = L4(x, y) + z4} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ⟩ = C4, σ : (w, x, y, z) 7→ (w, x, y, ζ4z).
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The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {z = 0} C4 = ⟨σ⟩ G 1 1 yes

We have

Br([X/G]) = (Z/4Z)2.

1.B2.2 The model is given by

X = {w2 = z3 + zL2(x
2, y2) + xyL′

2(x
2, y2)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C4, σ : (w, x, y, z) 7→ (ζ4w, x,−y,−z).

The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ2⟩ G 4 2 yes

We have

Br([X/G]) = (Z/2Z)4.

• n=5.
1.5 The model is given by

X = {w2 = z3 + λx4z + x(µx5 + y5)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C5, σ : (w, x, y, z) 7→ (w, x, ζ5y, z).

The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {y = 0} C5 = ⟨σ⟩ G 1 1 yes

We have

Br([X/G]) = (Z/5Z)2.

• n=6.
3.6.1 The model is given by

X = {w3 + x3 + y3 + xz2 + λyz2 = 0} ⊂ P3
w,x,y,z,

G = ⟨σ⟩ = C6, σ : (w, x, y, z) 7→ (ζ3w, x, y,−z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {z = 0} C2 = ⟨σ3⟩ G 1 0

yes
2 {w = 0} C3 = ⟨σ2⟩ G 1 0
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We have
Br([X/G]) = 0.

3.6.2 The model is given by

X = {wx2 + w3 + y3 + z3 + λwyz = 0} ⊂ P3
w,x,y,z,

G = ⟨σ⟩ = C6, σ : (w, x, y, z) 7→ (w,−x, ζ3y, ζ
2
3z).

The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {x = 0} C2 = ⟨σ3⟩ G 1 1 yes

We have
Br([X/G]) = (Z/2Z)2.

2.G3.1 The model is given by

X = {w2 = L4(x, y) + z3L1(x, y)} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ⟩ = C6, σ : (w, x, y, z) 7→ (−w, x, y, ζ3z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ3⟩ G 3 0

yes
2 {z = 0} C3 = ⟨σ2⟩ G 1 0

We have
Br([X/G]) = 0.

2.G3.2 The model is given by

X = {w2 = x(x3 + y3 + z3) + yzL1(x
2, yz)} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ⟩ = C6, σ : (w, x, y, z) 7→ (−w, x, ζ3y, ζ
2
3z).

The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ3⟩ G 3 1 yes

We have
Br([X/G]) = (Z/2Z)2.

2.6 The model is given by

X = {w2 = x3y + y4 + z4 + λy2z2} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ⟩ = C6, σ : (w, x, y, z) 7→ (−w, ζ3x, y,−z).
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The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {x = 0} C3 = ⟨σ2⟩ G 1 1 yes

We have

Br([X/G]) = (Z/3Z)2.

1.σρ The model is given by

X = {w2 = z3 + L6(x, y)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C6, σ : (w, x, y, z) 7→ (−w, x, y, ζ3z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ3⟩ G 4 0

yes
2 {z = 0} C3 = ⟨σ2⟩ G 2 0

We have

Br([X/G]) = 0.

1.ρ2 The model is given by

X = {w2 = z3 + L3(x
2, y2)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C6, σ : (w, x, y, z) 7→ (w, x,−y, ζ3z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {y = 0} C2 = ⟨σ3⟩ G 1 0

yes
2 {z = 0} C3 = ⟨σ2⟩ G 2 0

We have

Br([X/G]) = 0.

1.B3.1 The model is given by

X = {w2 = z3 + xL1(x
3, y3)z + L2(x

3, y3)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C6, σ : (w, x, y, z) 7→ (−w, x, ζ3y, z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ3⟩ G 4 0

yes
2 {y = 0} C3 = ⟨σ2⟩ G 1 0
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We have
Br([X/G]) = 0.

1.B3.2 The model is given by

X = {w2 = z3 + λx2y2z + L2(x
3, y3)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C6, σ : (w, x, y, z) 7→ (−w, x, ζ3y, ζ3z).

The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ3⟩ G 4 2 yes

We have
Br([X/G]) = (Z/2Z)4.

1.6 The model is given by

X = {w2 = z3 + λx4z + µx6 + y6} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C6, σ : (w, x, y, z) 7→ (w, x,−ζ3y, z).

The fixed curves stratification is

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C6 = ⟨σ⟩ G 1 1 yes

We have
Br([X/G]) = (Z/6Z)2.

• n=8.

1.B4.2 The model is given by

X = {w2 = λx2y2z + xy(x4 + y4)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C8, σ : (w, x, y, z) 7→ (ζ8w, x, ζ4y,−ζ4z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) Standard form
1 {x = 0} C2 = ⟨σ4⟩ G 0

no2 {y = 0} C2 = ⟨σ4⟩ G 0
3 {λxyz + x4 + y4 = 0} C2 = ⟨σ4⟩ G 0

The model is not in standard form: the divisor {w = 0} ∩ X fixed by σ4 is
the union of three rational curves ξ1, ξ2 and ξ3 meeting at one point p = [0 :
0 : 0 : 1], and thus not normal crossing. Moreover, p is a node of ξ3. To reach
a standard form, consider the blowup of X at p. Let E1 be the exceptional
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divisor and ξ̃i be the strict transform of ξi for i = 1, 2, 3. We find ξ̃3 meets E1

at two points p1 and p2, ξ̃1 ∩ ξ̃3 ∩ E1 = {p1}, ξ̃2 ∩ ξ̃3 ∩ E1 = {p2} and ξ̃1 and

ξ̃2 are disjoint. Then blowing up the points p1 and p2 brings the model into a
standard form. One then computes via Proposition 2.2 that

Br([X/G]) = Z/2Z.

• n=9.

3.9 The model is given by

X = {w3 + xz2 + x2y + y2z = 0} ⊂ P3
w,x,y,z,

G = ⟨σ⟩ = C9, σ : (w, x, y, z) 7→ (ζ9w, x, ζ3y, ζ
2
3z).

The fixed curves stratification is given by

i Curve ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C3 = ⟨σ3⟩ G 1 0 yes

We have

Br([X/G]) = 0.

• n=10.

1.B5 The model is given by

X = {w2 = z3 + λx4z + x(µx5 + y5)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C10, σ : (w, x, y, z) 7→ (−w, x, ζ5y, z).

The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ5⟩ G 4 0

yes
2 {y = 0} C5 = ⟨σ2⟩ G 1 0

We have

Br([X/G]) = 0.

• n=12.

3.12 The model is given by

X = {w3 + x3 + yz2 + y2x = 0} ⊂ P3
w,x,y,z,

G = ⟨σ⟩ = C12, σ : (w, x, y, z) 7→ (ζ3w, x,−y, ζ4z).
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The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {z = 0} C2 = ⟨σ6⟩ G 1 0

yes
2 {w = 0} C3 = ⟨σ4⟩ G 1 0

We have

Br([X/G]) = 0.

2.12 The model is given by

X = {w2 = x3y + y4 + z4} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ⟩ = C12, σ : (w, x, y, z) 7→ (w, ζ3x, y, ζ4z).

The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {z = 0} C2 = ⟨σ6⟩ G 1 0

yes
2 {x = 0} C3 = ⟨σ4⟩ G 1 0

We have

Br([X/G]) = 0.

1.σρ2.2 The model is given by

X = {w2 = z3 + xyL2(x
2, y2)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C12, σ : (w, x, y, z) 7→ (ζ4w, x,−y,−ζ3z).

The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ6⟩ G 4 0

yes
2 {z = 0} C3 = ⟨σ4⟩ G 2 0

We have

Br([X/G]) = 0.

• n=14.

2.G7 The model is given by

X = {w2 = x3y + y3z + xz3} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ⟩ = C14, σ : (w, x, y, z) 7→ (−w, ζ7x, ζ
4
7y, ζ

2
7z).
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The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ7⟩ G 3 0 yes

We have
Br([X/G]) = 0.

• n=15.

1.ρ5 The model is given by

X = {w2 = z3 + x(x5 + y5)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C15, σ : (w, x, y, z) 7→ (w, x, ζ5y, ζ3z).

The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {z = 0} C3 = ⟨σ5⟩ G 2 0

yes
2 {y = 0} C5 = ⟨σ3⟩ G 1 0

We have
Br([X/G]) = 0.

• n=18.

2.G9 The model is given by

X = {w2 = x3y + y4 + xz3} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ⟩ = C18, σ : (w, x, y, z) 7→ (−w, ζ69x, y, ζ9z).

The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ9⟩ G 3 0

yes
2 {z = 0} C3 = ⟨σ6⟩ G 1 0

We have
Br([X/G]) = 0.

• n=20.

1.B10 The model is given by

X = {w2 = z3 + x4z + xy5} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C20, σ : (w, x, y, z) 7→ (ζ4w, x, ζ10y,−z).
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The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {z = 0} C2 = ⟨σ10⟩ G 0 0

no
2 {y = 0} C5 = ⟨σ4⟩ G 1 0

The model is not in standard form. The curve ξ1 has an A4-singularity at
p = [0 : 1 : 0 : 0], and ξ1 intersects ξ2 at p non-transversally. One can obtain
a standard form via successive blowups such that the strict transforms of ξ1
and ξ2 and the exceptional divisors form a tree of rational curves. We have

Br([X/G]) = 0.

• n=24.

1.σρ4 The model is given by

X = {w2 = z3 + xy(x4 + y4)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C24, σ : (w, x, y, z) 7→ (ζ8w, x, ζ4y,−ζ712z).

The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ12⟩ G 4 0

yes
2 {z = 0} C3 = ⟨σ8⟩ G 2 0

We have
Br([X/G]) = 0.

• n=30.

1.σρ5 The model is given by

X = {w2 = z3 + x(x5 + y5)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = ⟨σ⟩ = C30, σ : (w, x, y, z) 7→ (−w, x, ζ5y, ζ3z).

The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ15⟩ G 4 0

yes2 {z = 0} C3 = ⟨σ10⟩ G 2 0
3 {y = 0} C5 = ⟨σ6⟩ G 1 0

We have
Br([X/G]) = 0.
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4.2. Noncyclic groups. We continue with actions of noncyclic groups.

• Automorphisms of P1 × P1

Let X = P1×P1. Note that H1(G,Pic(X)) = 0 for any G ⊂ Aut(X) and thus

Br([X/G]) = H2(G,C×)/Am(X,G),

where Am(X,G) is the Amitsur group of the G-action on X. The computation
of Am(X,G) in this case is straightforward, see e.g., [3, Proposition 6.7]. So for
actions on quadric surfaces, we compute Br([X/G]) from the Amitsur groups.

0.mn The action on X = P1 × P1 is given by

G = Cn × Cm, (x, y)
σ17→ (ζnx, y), (x, y)

σ27→ (x, ζmy).

One has Pic(X)G = Z2, generated by the G-invariant line bundles O(1, 0)
and O(0, 1). Both O(1, 0) and O(0, 1) are G-linearizable. It follows that
Am(X,G) = 0 and

Br([X/G]) = H2(G,C×) = Z/gcd(n,m)Z.

We also compute the fixed curves stratification in this case

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 [1 : 0]× P1 Cn = ⟨σ1⟩ G 0 0

yes
2 [0 : 1]× P1 Cn = ⟨σ1⟩ G 0 0
3 P1 × [1 : 0] Cm = ⟨σ2⟩ G 0 0
4 P1 × [0 : 1] Cm = ⟨σ2⟩ G 0 0

Using Proposition 2.2, one can also deduce Br([X/G]) = Z/gcd(n,m)Z.

P1.22n The action on X = P1 × P1 is given by

G = C2 × C2n, (x, y) 7→ (x−1, y), (x, y) 7→ (−x, ζ2ny).

One has Pic(X)G = Z2, generated by O(1, 0) and O(0, 1). The line bundle
O(1, 0) is not G-linearizable whileO(0, 1) is. It follows that Am(X,G) = Z/2Z
and

Br([X/G]) = 0.

P1.222n The action on X = P1 × P1 is given by

G = C2
2 × C2n, (x, y) 7→ (±x±1, y), (x, y) 7→ (x, ζ2ny).
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One has Pic(X)G = Z2, generated by O(1, 0) and O(0, 1). The line bundle
O(1, 0) is not G-linearizable whileO(0, 1) is. It follows that Am(X,G) = Z/2Z
and

Br([X/G]) = (Z/2Z)2.

P1.22.1 The action on X = P1 × P1 is given by

G = C2
2 , (x, y) 7→ (±x±1, y).

One has Pic(X)G = Z2, generated by O(1, 0) and O(0, 1). The line bundle
O(1, 0) is not G-linearizable whileO(0, 1) is. It follows that Am(X,G) = Z/2Z
and

Br([X/G]) = 0.

P1.222 The action on X = P1 × P1 is given by

G = C3
2 , (x, y) 7→ (±x,±y), (x, y) 7→ (x−1, y).

One has Pic(X)G = Z2, generated by O(1, 0) and O(0, 1). The line bundle
O(1, 0) is not G-linearizable whileO(0, 1) is. It follows that Am(X,G) = Z/2Z
and

Br([X/G]) = (Z/2Z)2.

P1.2222 The action on X = P1 × P1 is given by

G = C4
2 , (x, y) 7→ (±x±1,±y±1).

One has Pic(X)G = Z2, generated by O(1, 0) and O(0, 1). Both O(1, 0) and
O(0, 1) are not G-linearizable. It follows that Am(X,G) = (Z/2Z)2 and

Br([X/G]) = (Z/2Z)4.

P1s.24 The action on X = P1 × P1 is given by

G = C2 × C4, (x, y) 7→ (x−1, y−1), (x, y) 7→ (−y, x).

One has Pic(X)G = Z, generated by O(1, 1), which is not G-linearizable. It
follows that Am(X,G) = Z/2Z and

Br([X/G]) = 0.

P1s.222 The action on X = P1 × P1 is given by

G = C3
2 , (x, y) 7→ (−x,−y), (x, y) 7→ (x−1, y−1), (x, y) 7→ (y, x).
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One has Pic(X)G = Z, generated by O(1, 1), which is G-linearizable. It follows
that Am(X,G) = 0 and

Br([X/G]) = (Z/2Z)3.

• Automorphisms of P2

0.V9 The action on X = P2 is given by

G = C2
3 , (x : y : z) 7→ (x : ζ3y : ζ23z), (x : y : z) 7→ (y : z : x).

One has Pic(X)G = Z, generated by O(1), which is not G-linearizable. It
follows that Am(X,G) = Z/3Z and

Br([X/G]) = 0.

• Automorphisms of del Pezzo surfaces of degree 4

The surface X ⊂ P4
x1,...,x5

is given by the following equations with general
a, b, c ∈ C

cx2
1 − ax2

3 − (a− c)x2
4 − ac(a− c)x2

5 = 0(4.1)

cx2
2 − bx2

3 + (c− b)x2
4 − bc(c− b)x2

5 = 0.

4.222 The action on X is given by

G = C3
2 , σ1 : (x) 7→ (−x1, x2, x3, x4, x5),

σ2 : (x) 7→ (x1,−x2, x3, x4, x5), σ3 : (x) 7→ (x1, x2,−x3, x4, x5).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {x1 = 0} C2 = ⟨σ1⟩ G 1 0

yes2 {x2 = 0} C2 = ⟨σ2⟩ G 1 0
3 {x3 = 0} C2 = ⟨σ3⟩ G 1 0

The images of ξi and ξj in X(1)/G intersect in 2 points for i ̸= j ∈ {1, 2, 3}.
We find

Br([X/G]) = (Z/2Z)4.

4.2222 The action on X is given by

G = C4
2 , σ1 : (x) 7→ (−x1, x2, x3, x4, x5), σ2 : (x) 7→ (x1,−x2, x3, x4, x5),

σ3 : (x) 7→ (x1, x2,−x3, x4, x5), σ4 : (x) 7→ (x1, x2, x3,−x4, x5).
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The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {x1 = 0} C2 = ⟨σ1⟩ G 1 0

yes
2 {x2 = 0} C2 = ⟨σ2⟩ G 1 0
3 {x3 = 0} C2 = ⟨σ3⟩ G 1 0
4 {x4 = 0} C2 = ⟨σ4⟩ G 1 0
5 {x5 = 0} C2 = ⟨σ1σ2σ3σ4⟩ G 1 0

The images of ξi and ξj in X(1)/G intersect in 1 point for i ̸= j ∈ {1, . . . , 5}.
We find

Br([X/G]) = (Z/2Z)6.

4.42 The surface X is given by (4.1) with (a : b : c) = (1 : ξ : 1 + ξ) for any
ξ ∈ C \ {0,±1}. The G = C4 × C2-action on X is generated by

σ1 : (x) 7→ (−x2, x1, x4, x3,−x5), σ2 : (x) 7→ (x1, x2, x3, x4,−x5).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {x5 = 0} C2 = ⟨σ2⟩ G 1 1 yes

We have
Br([X/G]) = (Z/2)2.

• Automorphisms of cubic surfaces

3.33.1 The model is given by

X = {w3 + x3 + y3 + z3 = 0} ⊂ P3
w,x,y,z, G = ⟨σ1, σ2⟩ = C2

3 ,

σ1 : (w, x, y, z) 7→ (ζ3w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x, y, ζ3z).

The group
Br([X/G]) = (Z/3Z)2

has been computed in [11, Section 5].

3.33.2 The model is given by

X = {w3 + x3 + y3 + z3 + λxyz = 0} ⊂ P3
w,x,y,z, G = ⟨σ1, σ2⟩ = C2

3 ,

σ1 : (w, x, y, z) 7→ (ζ3w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x, ζ3y, ζ
2
3z).

The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C3 = ⟨σ1⟩ G 1 1 yes
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and
Br([X/G]) = (Z/3Z)2.

3.36 The model is given by

X = {w3 + x3 + xy2 + z3 = 0} ⊂ P3
w,x,y,z, G = ⟨σ1, σ2⟩ = C3 × C6,

σ1 : (w, x, y, z) 7→ (ζ3w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x,−y, ζ3z).

The fixed curves stratification is given by

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {y = 0} C2 = ⟨σ3

2⟩ G 1 0
yes2 {w = 0} C3 = ⟨σ1⟩ G 1 0

3 {z = 0} C3 = ⟨σ2
2⟩ G 1 0

The images of ξ2 and ξ3 in X(1)/G intersect in two points, so that

Br([X/G]) = Z/3Z.

3.333 The model is given by

X = {w3 + x3 + y3 + z3 = 0} ⊂ P3
w,x,y,z,

G = ⟨σ1, σ2, σ3⟩ = C3
3 , σ1 : (w, x, y, z) 7→ (ζ3w, x, y, z),

σ2 : (w, x, y, z) 7→ (w, x, ζ3y, z), σ3 : (w, x, y, z) 7→ (w, x, y, ζ3z).

The group
Br([X/G]) = (Z/3Z)3

has been computed in [11, Section 5].

• Automorphisms of Del Pezzo surfaces of degree 2

2.G2 The model is given by

X = {w2 = L4(x, y) + L2(x, y)z
2 + z4} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ1, σ2⟩ = C2
2 ,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x, y,−z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 3 1

yes
2 {z = 0} C2 = ⟨σ2⟩ G 1 0

The images of ξ1 and ξ2 in X(1)/G meet at four points. Recall that a zero-cycle∑
i niPi of degree 0 on an elliptic curve is a divisor of a function on the curve
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if and only if
∑

ni[Pi] = 0, where the latter sum is for the group law of the
elliptic curve. It follows that we have

Br([X/G]) = (Z/2Z)5.

2.G4.1 The model is given by

X = {w2 = L4(x, y) + z4} ⊂ P(2, 1, 1, 1)w,x,y,z, G = ⟨σ1, σ2⟩ = C2 × C4,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x, y, ζ4z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 3 0

yes
2 {z = 0} C4 = ⟨σ2⟩ G 1 0

The images of ξ1 and ξ2 in X(1)/G meet at four points. We have

Br([X/G]) = (Z/2Z)3.

2.G4.2 The model is given by

X = {w2 = x4 + y4 + z4 + xyL1(xy, z
2)} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ1, σ2⟩ = C2 × C4,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x,−y, ζ4z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 3 1

yes
2 {z = 0} C2 = ⟨σ2

2⟩ G 1 0

The images of ξ1 and ξ2 in X(1)/G meet at two points. We have

Br([X/G]) = (Z/2Z)3.

2.G6 The model is given by

X = {w2 = x3y + y4 + z4 + λy2z2} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ1, σ2⟩ = C2 × C6,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, ζ3x, y,−z).
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The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 3 0

yes2 {z = 0} C2 = ⟨σ3
2⟩ G 1 0

3 {x = 0} C3 = ⟨σ2
2⟩ G 1 0

The images of ξ1 and ξ2 in X(1)/G meet at two points. We have

Br([X/G]) = Z/2Z.

2.G8 The model is given by

X = {w2 = x3y + xy3 + z4} ⊂ P(2, 1, 1, 1)w,x,y,z, G = ⟨σ1, σ2⟩ = C2 × C8,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, ζ8x,−ζ8y, z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 3 0

yes
2 {z = 0} C4 = ⟨σ1σ

2
2⟩ G 1 0

The images of ξ1 and ξ2 in X(1)/G meet at three points. We have

Br([X/G]) = (Z/2Z)2.

2.G12 The model is given by

X = {w2 = x3y + y4 + z4} ⊂ P(2, 1, 1, 1)w,x,y,z, G = ⟨σ1, σ2⟩ = C2 × C12,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, ζ3x, y, ζ4z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 3 0

yes2 {x = 0} C3 = ⟨σ4
2⟩ G 1 0

3 {z = 0} C4 = ⟨σ3
2⟩ G 1 0

The images of ξ1 and ξ3 in X(1)/G meet at two points. We have

Br([X/G]) = Z/2Z.

2.G22 The model is given by

X = {w2 = L2(x
2, y2, z2)} ⊂ P(2, 1, 1, 1)w,x,y,z, G = ⟨σ1, σ2, σ3⟩ = C3

2 ,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x,−y, z),

σ3 : (w, x, y, z) 7→ (w, x, y,−z).
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The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 3 0

yes
2 {x = 0} C2 = ⟨σ2σ3⟩ G 1 0
3 {y = 0} C2 = ⟨σ2⟩ G 1 0
4 {z = 0} C2 = ⟨σ3⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p12 = p13 = p14 = 2, p23 = p24 = p34 = 1.

Since the intersection of any three of the four curves ξi, i = 1, 2, 3, 4 is empty,
we have

Br([X/G]) = (Z/2Z)6.

2.G24 The model is given by

X = {w2 = x4 + y4 + z4 + λx2y2} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ1, σ2, σ3⟩ = C2
2 × C4, σ1 : (w, x, y, z) 7→ (−w, x, y, z),

σ2 : (w, x, y, z) 7→ (w, x,−y, z), σ3 : (w, x, y, z) 7→ (w, x, y, ζ4z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 3 0

yes
2 {x = 0} C2 = ⟨σ2σ

2
3⟩ G 1 0

3 {y = 0} C2 = ⟨σ2⟩ G 1 0
4 {z = 0} C4 = ⟨σ3⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p14 = 2, p12 = p13 = p23 = p24 = p34 = 1.

Since the intersection of any three of the four curves ξi, i = 1, 2, 3, 4 is empty,
we have

Br([X/G]) = (Z/2Z)4.

2.G44 The model is given by

X = {w2 = x4 + y4 + z4} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ1, σ2, σ3⟩ = C2 × C2
4 , σ1 : (w, x, y, z) 7→ (−w, x, y, z),

σ2 : (w, x, y, z) 7→ (w, x, ζ4y, z), σ3 : (w, x, y, z) 7→ (w, x, y, ζ4z).
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The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 3 0

yes
2 {x = 0} C4 = ⟨σ1σ2σ3⟩ G 1 0
3 {y = 0} C4 = ⟨σ2⟩ G 1 0
4 {z = 0} C4 = ⟨σ3⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p12 = p13 = p14 = p23 = p24 = p34 = 1.

Since the intersection of any three of the four curves ξi, i = 1, 2, 3, 4 is empty,
we have

Br([X/G]) = (Z/2Z)2 ⊕ (Z/4Z).

2.24.1 The model is given by

X = {w2 = x4 + y4 + z4 + λx2y2} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ1, σ2⟩ = C2 × C4, σ1 : (w, x, y, z) 7→ (w, x,−y, z),

σ2 : (w, x, y, z) 7→ (w, x, y, ζ4z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {y = 0} C2 = ⟨σ1⟩ G 1 0

yes2 {x = 0} C2 = ⟨σ1σ
2
2⟩ G 1 0

3 {z = 0} C4 = ⟨σ2⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p13 = p23 = 2, p12 = 1.

Since ξ1 ∩ ξ2 ∩ ξ3 is empty, we have

Br([X/G]) = (Z/2Z)3.

2.24.2 The model is given by

X = {w2 = x4 + y4 + z4 + λx2y2} ⊂ P(2, 1, 1, 1)w,x,y,z,

G = ⟨σ1, σ2⟩ = C2 × C4, σ1 : (w, x, y, z) 7→ (−w, x,−y, z),

σ2 : (w, x, y, z) 7→ (w, x, y, ζ4z).
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The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {z = 0} C4 = ⟨σ2⟩ G 1 1 yes

We have

Br([X/G]) = (Z/4Z)2.

2.44.1 The model is given by

X = {w2 = x4 + y4 + z4} ⊂ P(2, 1, 1, 1)w,x,y,z, G = ⟨σ1, σ2⟩ = C2
4 ,

σ1 : (w, x, y, z) 7→ (w, x, ζ4y, z), σ2 : (w, x, y, z) 7→ (w, x, y, ζ4z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {x = 0} C2 = ⟨σ2

1σ
2
2⟩ G 1 0

yes2 {y = 0} C4 = ⟨σ1⟩ G 1 0
3 {z = 0} C4 = ⟨σ2⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p12 = p13 = 1, p23 = 2.

Since ξ1 ∩ ξ2 ∩ ξ3 is empty, we have

Br([X/G]) = (Z/2Z)⊕ (Z/4Z).

2.44.2 The model is given by

X = {w2 = x4 + y4 + z4} ⊂ P(2, 1, 1, 1)w,x,y,z, G = ⟨σ1, σ2⟩ = C2
4 ,

σ1 : (w, x, y, z) 7→ (−w, x, ζ4y, z), σ2 : (w, x, y, z) 7→ (w, x, y, ζ4z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {y = 0} C2 = ⟨σ2

1⟩ G 1 0
yes2 {x = 0} C4 = ⟨σ1σ2⟩ G 1 0

3 {z = 0} C4 = ⟨σ2⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p12 = p13 = p23 = 1.

Since ξ1 ∩ ξ2 ∩ ξ3 is empty, we have

Br([X/G]) = Z/2Z.
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• Automorphisms of Del Pezzo surfaces of degree 1

1.B2.1 The model is given by

X = {w2 = z3 + zL2(x
2, y2) + L3(x

2, y2)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = C2
2 , σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x,−y, z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 4 1

yes
2 {y = 0} C2 = ⟨σ2⟩ G 1 0

The images of ξ1 and ξ2 in X(1)/G intersect in three points. We have

Br([X/G]) = (Z/2Z)4.

1.σρ2.1 The model is given by

X = {w2 = z3 + L3(x
2, y2)} ⊂ P(3, 1, 1, 2)w,x,y,z, G = C6 × C2,

σ1 : (w, x, y, z) 7→ (−w, x, y, ζ3z), σ2 : (w, x, y, z) 7→ (w, x,−y, z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ3

1⟩ G 4 0
yes2 {y = 0} C2 = ⟨σ2⟩ G 1 0

3 {z = 0} C3 = ⟨σ2
1⟩ G 2 0

The images of ξ1 and ξ2 in X(1)/G intersect in one point. We have

Br([X/G]) = 0.

1.σρ3 The model is given by

X = {w2 = z3 + L2(x
3, y3)} ⊂ P(3, 1, 1, 2)w,x,y,z, G = C6 × C3,

σ1 : (w, x, y, z) 7→ (−w, x, y, ζ3z), σ2 : (w, x, y, z) 7→ (w, x, ζ3y, z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ3

1⟩ G 4 0

yes
2 {y = 0} C3 = ⟨σ2⟩ G 1 0
3 {x = 0} C3 = ⟨σ2

1σ2⟩ G 1 0
4 {z = 0} C3 = ⟨σ2

1⟩ G 2 0
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Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p23 = p24 = p34 = 1.

Since ξ2 ∩ ξ3 ∩ ξ4 is empty, we have

Br([X/G]) = Z/3Z.

1.ρ3 The model is given by

X = {w2 = z3 + L2(x
3, y3)} ⊂ P(3, 1, 1, 2)w,x,y,z, G = C2

3 ,

σ1 : (w, x, y, z) 7→ (w, x, y, ζ3z), σ2 : (w, x, y, z) 7→ (w, x, ζ3y, z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {z = 0} C3 = ⟨σ1⟩ G 2 0

yes2 {y = 0} C3 = ⟨σ2⟩ G 1 0
3 {x = 0} C3 = ⟨σ2

1σ2⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p12 = p13 = 2, p23 = 1.

Since ξ1 ∩ ξ2 ∩ ξ3 is empty, we have

Br([X/G]) = (Z/3Z)3.

1.B4.1 The model is given by

X = {w2 = z3 + zL1(x
4, y4) + x2L′

1(x
4, y4)} ⊂ P(3, 1, 1, 2)w,x,y,z,

G = C2 × C4,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x, ζ4y, z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 4 0

yes2 {x = 0} C2 = ⟨σ1σ
2
2⟩ G 1 0

3 {y = 0} C4 = ⟨σ2⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p12 = 2, p13 = 3, p23 = 1.

Since ξ1 ∩ ξ2 ∩ ξ3 is empty, we have

Br([X/G]) = (Z/2Z)4.
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1.B6.1 The model is given by

X = {w2 = z3 + λzx4 + µx6 + y6} ⊂ P(3, 1, 1, 2)w,x,y,z, G = C2 × C6,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x,−ζ3y, z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 4 0

yes2 {x = 0} C2 = ⟨σ1σ
3
2⟩ G 1 0

3 {y = 0} C6 = ⟨σ2⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p13 = 3, p12 = p23 = 1.

Since ξ1 ∩ ξ2 ∩ ξ3 is empty, we have

Br([X/G]) = (Z/2Z)3.

1.σρ6 The model is given by

X = {w2 = z3 + x6 + y6} ⊂ P(3, 1, 1, 2)w,x,y,z, G = C2
6 ,

σ1 : (w, x, y, z) 7→ (−w, x, y, ζ3z), σ2 : (w, x, y, z) 7→ (w, x,−ζ3y, z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ3

1⟩ G 4 0

yes
2 {z = 0} C3 = ⟨σ2

1⟩ G 2 0
3 {x = 0} C6 = ⟨σ5

1σ2⟩ G 1 0
4 {y = 0} C6 = ⟨σ2⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p14 = 3, p13 = p23 = p24 = p34 = 1.

Since the intersection of any three of the four curves ξi, i = 1, 2, 3, 4 is empty,
we have

Br([X/G]) = (Z/2Z)3 ⊕ (Z/3Z).

1.ρ6 The model is given by

X = {w2 = z3 + x6 + y6} ⊂ P(3, 1, 1, 2)w,x,y,z, G = C3 × C6,

σ1 : (w, x, y, z) 7→ (w, x, y, ζ3z), σ2 : (w, x, y, z) 7→ (w, x,−ζ3y, z).
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The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {z = 0} C3 = ⟨σ1⟩ G 2 0

yes2 {x = 0} C3 = ⟨σ1σ
2
2⟩ G 1 0

3 {y = 0} C6 = ⟨σ2⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p13 = 2, p12 = p23 = 1.

Since ξ1 ∩ ξ2 ∩ ξ3 is empty, we have

Br([X/G]) = (Z/3Z)2.

1.B6.2 The model is given by

X = {w2 = z3 + λzx2y2 + x6 + y6} ⊂ P(3, 1, 1, 2)w,x,y,z, G = C2 × C6,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (w, x,−ζ3y, ζ3z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 4 1

yes2 {x = 0} C2 = ⟨σ1σ
3
2⟩ G 1 0

3 {y = 0} C2 = ⟨σ3
2⟩ G 1 0

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p12 = p13 = p23 = 1.

Since ξ1 ∩ ξ2 ∩ ξ3 is empty, we have

Br([X/G]) = (Z/2Z)3.

1.B12 The model is given by

X = {w2 = z3 + λzx4 + y6} ⊂ P(3, 1, 1, 2)w,x,y,z, G = C2 × C12,

σ1 : (w, x, y, z) 7→ (−w, x, y, z), σ2 : (w, x, y, z) 7→ (ζ4w, x, ζ12y,−z).

The fixed curves stratification is

i Curves ξi Iξi Dξi g(ξi) g(ξi/Dξi) Standard form
1 {w = 0} C2 = ⟨σ1⟩ G 4 0

yes2 {x = 0} C4 = ⟨σ3
2⟩ G 1 0

3 {y = 0} C6 = ⟨σ1σ
2
2⟩ G 1 0



37

Let pij be the number of intersection points of the images of ξi and ξj in
X(1)/G. We record

p13 = 2, p12 = p23 = 1.

Since ξ1 ∩ ξ2 ∩ ξ3 is empty, we have

Br([X/G]) = (Z/2Z)2.

4.3. Tables. We record the above computations in the following tables.

Cyclic groups G

Label in [1] Group G Surface X Br([X/G])
0.n Cn P2 0
C.2 C2 conic bundles vary
2.G C2 dP2 (Z/2Z)6
1.B C2 dP1 (Z/2Z)8

C.ro.m C2m conic bundles vary
C.re.m C2m conic bundles vary
3.3 C3 dP3 (Z/3Z)2
1.ρ C3 dP1 (Z/3Z)4
2.4 C4 dP2 (Z/4Z)2

1.B2.2 C4 dP1 (Z/2Z)4
1.5 C5 dP1 (Z/5Z)2
3.6.1 C6 dP3 0
3.6.2 C6 dP3 (Z/2Z)2
2.G3.1 C6 dP2 0
2.G3.2 C6 dP2 (Z/2Z)2
2.6 C6 dP2 (Z/3Z)2
1.σρ C6 dP1 0
1.ρ2 C6 dP1 0
1.B3.1 C6 dP1 0
1.B3.2 C6 dP1 (Z/2Z)4
1.6 C6 dP1 (Z/6Z)2

1.B4.2 C8 dP1 Z/2Z
3.9 C9 dP3 0
1.B5 C10 dP1 0
3.12 C12 dP3 0
2.12 C12 dP2 0
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1.σρ2.2 C12 dP1 0
2.G7 C14 dP2 0
1.ρ5 C15 dP1 0
2.G9 C18 dP2 0
1.B10 C20 dP1 0
1.σρ4 C24 dP1 0
1.σρ5 C30 dP1 0

Noncyclic groups G

Label in [1] Group G Surface X Br([X/G])
0.mn Cn × Cm P1 × P1 Z/gcd(m,n)Z
P1.22n C2 × C2n P1 × P1 0
P1.222n C2

2 × C2n P1 × P1 (Z/2Z)2
P1.22.1 C2

2 P1 × P1 0
P1.222 C3

2 P1 × P1 (Z/2Z)2
P1.2222 C4

2 P1 × P1 (Z/2Z)4
P1s.24 C2 × C4 P1 × P1 0
P1s.222 C3

2 P1 × P1 (Z/2Z)3
0.V9 C2

3 P2 0
4.222 C3

2 dP4 (Z/2Z)4
4.2222 C4

2 dP4 (Z/2Z)6
4.42 C4 × C2 dP4 (Z/2Z)2
3.33.1 C2

3 dP3 (Z/3Z)2
3.33.2 C2

3 dP3 (Z/3Z)2
3.36 C3 × C6 dP3 Z/3Z
3.333 C3

3 dP3 (Z/3Z)3
2.G2 C2

2 dP2 (Z/2Z)5
2.G4.1 C2 × C4 dP2 (Z/2Z)3
2.G4.2 C2 × C4 dP2 (Z/2Z)3
2.G6 C2 × C6 dP2 Z/2Z
2.G8 C2 × C8 dP2 (Z/2Z)2
2.G12 C2 × C12 dP2 Z/2Z
2.G22 C3

2 dP2 (Z/2Z)6
2.G24 C2

2 × C4 dP2 (Z/2Z)4
2.G44 C2 × C2

4 dP2 (Z/2Z)2 ⊕ (Z/4Z)
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2.24.1 C2 × C4 dP2 (Z/2Z)3
2.24.2 C2 × C4 dP2 (Z/4Z)2
2.44.1 C2

4 dP2 (Z/2Z)⊕ (Z/4Z)
2.44.2 C2

4 dP2 Z/2Z
1.B2.1 C2

2 dP1 (Z/2Z)4
1.σρ2.1 C6 × C2 dP1 0
1.σρ3 C6 × C3 dP1 Z/3Z
1.ρ3 C2

3 dP1 (Z/3Z)3
1.B4.1 C2 × C4 dP1 (Z/2Z)4
1.B6.1 C2 × C6 dP1 (Z/2Z)3
1.σρ6 C2

6 dP1 (Z/2Z)3 ⊕ (Z/3Z)
1.ρ6 C3 × C6 dP1 (Z/3Z)2
1.B6.2 C2 × C6 dP1 (Z/2Z)3
1.B12 C2 × C12 dP1 (Z/2Z)2
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