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Throughout, we work with algebraically closed field k of character-
istic 0.

Among the central problems in birational geometry is the lineariz-
ability problem, aimed at determining whether or not a regular action
from a finite group on a rational variety is equivariantly birational to a
regular action on projective spaces. Motivations to study this problem
arise from both geometry and arithmetic. It is part of the long-standing
program of identifying conjugacy classes of the Cremona group, the
group of birational automorphisms of Pn, which remains largely open
in dimension 3 or higher; it is also closely related to the rationality
problem over nonclosed fields, where the Galois action is considered an
analogue of the group action.

In [CTZ24] and [CMTZ24], we study the linearizability problem of
singular cubic threefolds. Precisely, we are interested in the following:

Main problem: Let X be a cubic hypersurface in P4(k) with ADE sin-
gularities and G ⊂ Aut(X). When is there a G-equivariant birational
map X 99K P3 where the G-action on P3 is regular and generically free?
If such a birational map exists, we call the G-action on X is lineariz-
able; we also say it is stably linearizable if the G-action on X × Pr is
linearizable for some r ∈ N and trivial action on the Pr factor.

From now on, letX denote such a singular cubic threefold. Beginning
with the recent classification of configurations of isolated singularities
on cubic threefolds [Vik23], we proceed to identify the automorphism
groups Aut(X) in most cases, followed by a case-by-case analysis of
linearizability. These cubic threefolds are rational via projection from
a singular point. The rich geometry behind them allows us to explore
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and showcase the applicability of a wide range of tools. In particular,
among the linearization constructions we use (when they exist) are

• Projection from a G-fixed singular point.
• Unprojection from a G-invariant plane to an intersection of two
quadrics in P5, followed by projection from a G-invariant line.

• Equivariant birational map to a quadric threefold, followed by
projection from a G-fixed point there.

When in absence of an obvious linearization map, we look for various
obstructions to the linearizability, including:

Intermediate Jacobian. Let k = C. The seminal work by Clemens
and Griffiths proves that smooth cubic threefolds are irrational over C
by showing their intermediate Jacobians are not isomorphic to the Ja-
cobian of a (possibly reducible) curve as principally polarized abelian
varieties. Since singular cubic threefolds are rational, their intermedi-
ate Jacobians are indeed Jacobians of curves. But this may fail equiv-
ariantly – the group action on the intermediate Jacobian may not come
from the action on the curve when the curve is non-hyperelliptic:

Proposition 1. Let X be a singular cubic threefold with 2A1 or 2A2-
singularities over C, and G ⊂ Aut(X). Then the G-action on X is
linearizable if and only if it fixes two singular points.

Sketch proof. In these cases, the intermediate Jacobian IJ(X) is iso-
morphic to the Jacobian of a smooth plane quartic curve C. Then
Aut(J(C)) = Aut(C)× C2. When G switches two singular points, the
G-actions on IJ(X) and J(C) differ by the C2-factor. So the G-action
on X does not come from blowups of curves in P3 and we conclude it
is not linearizable by the equivariant weak factorization theorem. □

Cohomology. Given a G-action on X, there is a natural G-lattice
Pic(X̃), where X̃ is an equivariant desingularization of X. When per-
forming equivariant blowups, we change the Picard lattice by adding a
copy of Zr to it, with some r ∈ N and the G-action permuting factors
of Zr. Therefore, if the G-action on X is stably linearizable, Pic(X̃) is
a stably permutation module, i.e., Pic(X̃) ⊕M is a permutation mod-
ule for some permutation module M . In particular, this implies the
vanishing of the first group cohomology

H1(H,Pic(X̃)) = 0, ∀H ⊂ G.(1)
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We call the failure of (1) the (H1)-obstruction to stable linearizabil-
ity. This can be effectively checked given a presentation of the Picard
lattice. We compute (H1)-obstruction in each configuration of singu-
larities on a cubic threefold.

Proposition 2. Let X be a cubic threefold with isolated singularities,
and X̃ → X an Aut(X)-equivariant resolution of singularities. Then

• Pic(X̃) is a permutation module for Aut(X) if X is not of one
of the following configurations of singularities

6A1 in linear general position , 8A1, 9A1, 10A1,

2A5, 2D4 + 2A1 and 3D4.

• For each of the cubic threefolds X with singularities in the list
above, if the Aut(X)-action does not fix any singular point, then
it has an (H1)-obstruction.

Specialization. There is an extensive literature on the singularity the-
ory and the moduli space of cubic threefolds, facilitating a natural ap-
plication of the specialization/degeneration technique. It is classically
known that, locally, ADE singularities T specializes to T ′ if and only
if the Dynkin diagram of the root system of T is an induced subgraph
of that of T ′. For cubic threefolds, this result extends globally [Vik23,
Remark 1.19]. In presence of the group action, we apply the Kresch-
Tschinkel equivariant specialization theorem:

Theorem 3 ([KT22, Corollary 6.8],[CTZ24, Proposition 2.9]). Let k
be an uncountable algebraically closed field of characteristic zero and G
a finite group. Let π : X → B be a G-equivariant flat and projective
morphism onto a smooth curve over k, such that

• G acts trivially on B and generically freely on the fibers of π,
• for some b0 ∈ B, the special fiber X0 is irreducible, has so called
BG-rational singularities, and the G-action on X0 is not lin-
earizable.

Then, for very general b ∈ B, the G-action on the special fiber Xb is
not linearizable.

The specialization technique allows to exhibit “invisible” lineariz-
ability obstruction when applied to the family where the general fibers
do not carry obstructions themselves but the central fiber does:
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Example 4. Let X → A1
k be a family of cubic threefolds given by

x1x2x3 + (x1 + x2 + x3)x4x5 + (x4 + x5)(x4 + bx5)(bx4 + x5) = 0

with parameter b ∈ k. Consider the G = C3 action generated by
permuting coordinates x1, x2, x3. For a very general b ∈ k, the fiber is
a cubic threefold with 3A1-singularities; the central fiber above b = 0
is a cubic threefold X0 with 9A1-singularities. The G-action on X0 has
an (H1)-obstruction. So a very general member in X is not G-stably
linearizable while there is no (H1)-obstruction to itself.

Burnside Formalism. The Burnside formalism is a powerful tool to
study equvariant birational geometry recently developed by Kontse-
vich, Kresch, Pestun, and Tschinkel [KPT23], [KT22]. To an appropri-
ate model X of dimension n with a G-action, it assigns a class [X ý G]
taking values in the Burnside group Burnn(G), an abelian group de-
fined with symbols as generators and certain blowup relations ensuring
the class [X ý G] is invariant under equivariant blowups. The class
captures information of all strata with nontrivial stabilizers and the
residue G-action on them, complementing many classical framework
e.g., birational rigidity. It can be computationally challenging to apply
the Burnside formalism in some cases. We illustrate a simple applica-
tion in the following example, using incompressible symbols.

Example 5. Consider the cubic threefold X with 4A2-singularities
given by

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x3
5 = 0(2)

and the G = C2
2 action generated by τ switching coordinates x1 ↔ x2

and ι : x3 ↔ x4. Then τ fixes a smooth cubic surface S = {x1 = x2}∩X
with a residue ι-action. So the class [X ý G] contains a symbol

(⟨τ⟩, ⟨ι⟩ ýk(S), β).

Since ι fixes a genus 1 curve on S, we know H1(⟨ι⟩,Pic(S)) = (Z/2)2.
Then S is not ι-equivariantly birational to the exceptional divisor of
any blowup of a standard model in Burnside formalism. This implies
that the symbol (2) is incompressible, meaning it is a free generator of
Burn3(G). On the other hand, the class [P3 ý G] of any linear action
does not contain the symbol (2). So the class [X ý G] is different
from that of any linear action, and we conclude that the G-action on
X is not linearizable. Note that none of other obstructions mentioned
above is applicable to this case.
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