EQUIVARIANT GEOMETRY OF SINGULAR CUBIC THREEFOLDS

ZHIJIA ZHANG

(joint work with Ivan Cheltsov, Lisa Marquand, and Yuri Tschinkel)

Throughout, we work with algebraically closed field k of characteristic 0.

Among the central problems in birational geometry is the *lineariz-ability* problem, aimed at determining whether or not a regular action from a finite group on a rational variety is equivariantly birational to a regular action on projective spaces. Motivations to study this problem arise from both geometry and arithmetic. It is part of the long-standing program of identifying conjugacy classes of the Cremona group, the group of birational automorphisms of \mathbb{P}^n , which remains largely open in dimension 3 or higher; it is also closely related to the *rationality problem* over nonclosed fields, where the Galois action is considered an analogue of the group action.

In [CTZ24] and [CMTZ24], we study the linearizability problem of singular cubic threefolds. Precisely, we are interested in the following:

Main problem: Let X be a cubic hypersurface in $\mathbb{P}^4(k)$ with ADE singularities and $G \subset \operatorname{Aut}(X)$. When is there a G-equivariant birational map $X \dashrightarrow \mathbb{P}^3$ where the G-action on \mathbb{P}^3 is regular and generically free? If such a birational map exists, we call the G-action on X is *linearizable*; we also say it is *stably linearizable* if the G-action on $X \times \mathbb{P}^r$ is linearizable for some $r \in \mathbb{N}$ and trivial action on the \mathbb{P}^r factor.

From now on, let X denote such a singular cubic threefold. Beginning with the recent classification of configurations of isolated singularities on cubic threefolds [Vik23], we proceed to identify the automorphism groups $\operatorname{Aut}(X)$ in most cases, followed by a case-by-case analysis of linearizability. These cubic threefolds are rational via projection from a singular point. The rich geometry behind them allows us to explore

Date: May 19, 2024.

ZHIJIA ZHANG

and showcase the applicability of a wide range of tools. In particular, among the linearization constructions we use (when they exist) are

- Projection from a *G*-fixed singular point.
- Unprojection from a G-invariant plane to an intersection of two quadrics in P⁵, followed by projection from a G-invariant line.
- Equivariant birational map to a quadric threefold, followed by projection from a *G*-fixed point there.

When in absence of an obvious linearization map, we look for various obstructions to the linearizability, including:

Intermediate Jacobian. Let $k = \mathbb{C}$. The seminal work by Clemens and Griffiths proves that smooth cubic threefolds are irrational over \mathbb{C} by showing their intermediate Jacobians are not isomorphic to the Jacobian of a (possibly reducible) curve as principally polarized abelian varieties. Since singular cubic threefolds are rational, their intermediate Jacobians are indeed Jacobians of curves. But this may fail equivariantly – the group action on the intermediate Jacobian may not come from the action on the curve when the curve is non-hyperelliptic:

Proposition 1. Let X be a singular cubic threefold with $2A_1$ or $2A_2$ -singularities over \mathbb{C} , and $G \subset Aut(X)$. Then the G-action on X is linearizable if and only if it fixes two singular points.

Sketch proof. In these cases, the intermediate Jacobian IJ(X) is isomorphic to the Jacobian of a smooth plane quartic curve C. Then $Aut(J(C)) = Aut(C) \times C_2$. When G switches two singular points, the G-actions on IJ(X) and J(C) differ by the C_2 -factor. So the G-action on X does not come from blowups of curves in \mathbb{P}^3 and we conclude it is not linearizable by the equivariant weak factorization theorem. \Box

Cohomology. Given a *G*-action on *X*, there is a natural *G*-lattice $\operatorname{Pic}(\tilde{X})$, where \tilde{X} is an equivariant desingularization of *X*. When performing equivariant blowups, we change the Picard lattice by adding a copy of \mathbb{Z}^r to it, with some $r \in \mathbb{N}$ and the *G*-action permuting factors of \mathbb{Z}^r . Therefore, if the *G*-action on *X* is stably linearizable, $\operatorname{Pic}(\tilde{X})$ is a *stably permutation module*, i.e., $\operatorname{Pic}(\tilde{X}) \oplus M$ is a permutation module for some permutation module *M*. In particular, this implies the vanishing of the first group cohomology

(1)
$$H^1(H, \operatorname{Pic}(X)) = 0, \quad \forall H \subset G.$$

We call the failure of (1) the **(H1)**-obstruction to stable linearizability. This can be effectively checked given a presentation of the Picard lattice. We compute **(H1)**-obstruction in each configuration of singularities on a cubic threefold.

Proposition 2. Let X be a cubic threefold with isolated singularities, and $\tilde{X} \to X$ an Aut(X)-equivariant resolution of singularities. Then

• Pic(X) is a permutation module for Aut(X) if X is not of one of the following configurations of singularities

 $6A_1$ in linear general position, $8A_1$, $9A_1$, $10A_1$,

 $2A_5$, $2D_4 + 2A_1$ and $3D_4$.

• For each of the cubic threefolds X with singularities in the list above, if the Aut(X)-action does not fix any singular point, then it has an (H1)-obstruction.

Specialization. There is an extensive literature on the singularity theory and the moduli space of cubic threefolds, facilitating a natural application of the specialization/degeneration technique. It is classically known that, locally, ADE singularities T specializes to T' if and only if the Dynkin diagram of the root system of T is an *induced subgraph* of that of T'. For cubic threefolds, this result extends globally [Vik23, Remark 1.19]. In presence of the group action, we apply the Kresch-Tschinkel equivariant specialization theorem:

Theorem 3 ([KT22, Corollary 6.8],[CTZ24, Proposition 2.9]). Let k be an uncountable algebraically closed field of characteristic zero and G a finite group. Let $\pi : \mathcal{X} \to B$ be a G-equivariant flat and projective morphism onto a smooth curve over k, such that

- G acts trivially on B and generically freely on the fibers of π ,
- for some $b_0 \in B$, the special fiber \mathcal{X}_0 is irreducible, has so called BG-rational singularities, and the G-action on \mathcal{X}_0 is not linearizable.

Then, for very general $b \in B$, the G-action on the special fiber \mathcal{X}_b is not linearizable.

The specialization technique allows to exhibit "invisible" linearizability obstruction when applied to the family where the general fibers do not carry obstructions themselves but the central fiber does:

ZHIJIA ZHANG

Example 4. Let $\mathcal{X} \to \mathbb{A}^1_k$ be a family of cubic threefolds given by

 $x_1x_2x_3 + (x_1 + x_2 + x_3)x_4x_5 + (x_4 + x_5)(x_4 + bx_5)(bx_4 + x_5) = 0$

with parameter $b \in k$. Consider the $G = C_3$ action generated by permuting coordinates x_1, x_2, x_3 . For a very general $b \in k$, the fiber is a cubic threefold with 3A₁-singularities; the central fiber above b = 0is a cubic threefold X_0 with 9A₁-singularities. The *G*-action on X_0 has an **(H1)**-obstruction. So a very general member in \mathcal{X} is not *G*-stably linearizable while there is no **(H1)**-obstruction to itself.

Burnside Formalism. The Burnside formalism is a powerful tool to study equvariant birational geometry recently developed by Kontsevich, Kresch, Pestun, and Tschinkel [KPT23], [KT22]. To an appropriate model X of dimension n with a G-action, it assigns a class $[X \, \bigcirc \, G]$ taking values in the Burnside group $\operatorname{Burn}_n(G)$, an abelian group defined with symbols as generators and certain blowup relations ensuring the class $[X \, \bigcirc \, G]$ is invariant under equivariant blowups. The class captures information of all strata with nontrivial stabilizers and the residue G-action on them, complementing many classical framework e.g., birational rigidity. It can be computationally challenging to apply the Burnside formalism in some cases. We illustrate a simple application in the following example, using incompressible symbols.

Example 5. Consider the cubic threefold X with $4A_2$ -singularities given by

(2)
$$x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4 + x_5^3 = 0$$

and the $G = C_2^2$ action generated by τ switching coordinates $x_1 \leftrightarrow x_2$ and $\iota : x_3 \leftrightarrow x_4$. Then τ fixes a smooth cubic surface $S = \{x_1 = x_2\} \cap X$ with a residue ι -action. So the class $[X \circlearrowright G]$ contains a symbol

$$(\langle \tau \rangle, \langle \iota \rangle \subset k(S), \beta).$$

Since ι fixes a genus 1 curve on S, we know $\mathrm{H}^1(\langle \iota \rangle, \mathrm{Pic}(S)) = (\mathbb{Z}/2)^2$. Then S is not ι -equivariantly birational to the exceptional divisor of any blowup of a *standard model* in Burnside formalism. This implies that the symbol (2) is *incompressible*, meaning it is a free generator of $\mathrm{Burn}_3(G)$. On the other hand, the class $[\mathbb{P}^3 \mathfrak{S} G]$ of any linear action does not contain the symbol (2). So the class $[X \mathfrak{S} G]$ is different from that of any linear action, and we conclude that the *G*-action on X is not linearizable. Note that none of other obstructions mentioned above is applicable to this case.

4

References

- [CMTZ24] I. Cheltsov, L. Marquand, Yu. Tschinkel, and Zh. Zhang. Equivariant geometry of singular cubic threefolds, II, 2024. arxiv:2405.02744.
- [CTZ24] I. Cheltsov, Yu. Tschinkel, and Zh. Zhang. Equivariant geometry of singular cubic threefolds, 2024. arXiv:2401.10974.
- [KPT23] Maxim Kontsevich, Vasily Pestun, and Yuri Tschinkel. Equivariant birational geometry and modular symbols. J. Eur. Math. Soc. (JEMS), 25(1):153–202, 2023.
- [KT22] A. Kresch and Yu. Tschinkel. Equivariant birational types and Burnside volume. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 23(2):1013–1052, 2022.
- [Vik23] S. Viktorova. On the classification of singular cubic threefolds, 2023. arXiv:2304.10452.

COURANT INSTITUTE, 251 MERCER STREET, NEW YORK, NY 10012, USA *Email address:* zhijia.zhang@cims.nyu.edu